首页> 外文期刊>Physica Scripta: An International Journal for Experimental and Theoretical Physics >The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash
【24h】

The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

机译:计算力学和可视化在科学与技术中的高级作用:德国航班的分析9525崩溃

获取原文
获取原文并翻译 | 示例
           

摘要

Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves 'pulverization' such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a 'debris cloud'. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on 'hollow interior' modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.
机译:计算数学,物理和工程形成了现代计算科学的主要组成部分,现在与理论和实验科学的既定分支相同。计算力学基于数学建模和计算解决了科学和工程问题,绕过了昂贵且耗时的实验室设置和实验测量的需求。此外,它允许大规模系统的数值模拟,例如在任何地球结合的实验室中无法进行的星系的形成。本文作为21世纪前沿系列的一部分,以说明一些最先进的计算科学。我们强调了如何在2015年3月24日德国航空航班9525的粉碎崩溃时进行数值建模和可视化,作为展示。这种数值建模和随后的飞机模拟到陆地或山区的崩溃是复杂的任务,因为它们涉及复杂物理系统的理论研究和超级计算。最悲惨的崩溃类型涉及“粉碎”,例如这种德国蒙普林斯飞行的人。在这里,我们通过来自数值模拟工具LS-DYNA的超级计算机应用,通过视频动画显示粉碎机崩溃。声音验证过程挑战,但对于任何复杂的计算是必不可少的。我们通过对1993年F4 Phantom II战斗机的碰撞试验进行验证来实现这一目标,从1993年的F4 Phantom II战斗机进入墙壁。通过杂交两种主要方法,我们开发了一种方法:有限元分析和平滑粒子流体动力学。这种混合方法还通过显示“碎片云”来增强可视化。根据我们的超级计算机模拟和可视化,我们指出,基于“空心内部”建模的本主题的先验工作可能是非常有问题的,因此不太可能是正确的。我们使用来自恢复飞行数据记录器的信息讨论地形对粉碎的影响,并显示了我们在崩溃的最后时刻可能发生的对象和评估。最后,我们指出,我们的研究有可能进入实时飞行崩溃模拟器,以帮助研究未来航空安全的持续和生存能力。还制作了一些前瞻性陈述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号