首页> 外文期刊>Physica, D. Nonlinear phenomena >Explosive, continuous and frustrated synchronization transition in spiking Hodgkin-Huxley neural networks: The role of topology and synaptic interaction
【24h】

Explosive, continuous and frustrated synchronization transition in spiking Hodgkin-Huxley neural networks: The role of topology and synaptic interaction

机译:尖峰霍奇金轩轩新网络中的爆炸,连续和沮丧的同步过渡:拓扑和突触互动的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Synchronization is an important collective phenomenon in interacting oscillatory agents. Many functional features of the brain are related to synchronization of neurons. The type of synchronization transition that may occur (explosive vs. continuous) has been the focus of intense attention in recent years, mostly in the context of phase oscillator models for which collective behavior is independent of the mean-value of natural frequency. However, synchronization properties of biologically-motivated neural models depend on the firing frequencies. In this study we report a systematic study of gamma-band synchronization in spiking Hodgkin-Huxley neurons which interact via electrical or chemical synapses. We use various network models in order to define the connectivity matrix. We find that the underlying mechanisms and types of synchronization transitions in gamma-band differs from beta-band. In gamma-band, network regularity suppresses transition while randomness promotes a continuous transition. Heterogeneity in the underlying topology does not lead to any change in the order of transition, however, correlation between number of synapses and frequency of a neuron will lead to explosive synchronization in heterogeneous networks with electrical synapses. Furthermore, small-world networks modeling a fine balance between clustering and randomness (as in the cortex), lead to explosive synchronization with electrical synapses, but a smooth transition in the case of chemical synapses. We also find that hierarchical modular networks, such as the connectome, lead to frustrated transitions. We explain our results based on various properties of the network, paying particular attention to the competition between clustering and long-range synapses. (C) 2020 Elsevier B.V. All rights reserved.
机译:同步是相互作用振荡剂的重要集体现象。大脑的许多功能特征与神经元的同步有关。可能发生的同步转换类型(爆炸性与连续)是近年来强烈关注的重点,主要是在相位振荡器模型的上下文中,集体行为与自然频率的平均值无关。然而,生物动机神经模型的同步性质取决于射击频率。在这项研究中,我们报告了在尖刺Hodgkin-Huxley神经元中的伽马带同步的系统研究,通过电气或化学突触相互作用。我们使用各种网络模型来定义连接矩阵。我们发现伽马带中的底层机制和同步转换的类型不同于β波段。在伽马带中,网络规律性在随机性促进连续转变时抑制转换。底层拓扑中的异质性不会导致转型顺序的任何变化,然而,神经元的突触数和频率之间的相关性将导致具有电突触的异构网络中的爆炸性同步。此外,小世界网络在聚类和随机性(如皮层中)之间建模精细平衡(如在皮层中),导致与电气突触的爆炸性同步,而是在化学突触的情况下平滑过渡。我们还发现分层模块化网络,如连接,导致沮丧的转换。我们根据网络的各种属性解释我们的结果,特别注意聚类和远程突触之间的竞争。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号