首页> 外文期刊>Physical review, C >Role of nuclear physics in oscillations of magnetars
【24h】

Role of nuclear physics in oscillations of magnetars

机译:核物理学在磁振荡中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Strong magnetic fields have important effects on the crustal properties of magnetars. Here we study the magnetoelastic oscillations of magnetars, taking into consideration the effect of strong magnetic fields on the crustal composition (magnetized crust). We calculate global magnetoelastic (GME) modes as well as modes confined to the crust (CME) only. The ideal magnetohydrodynamics is adopted for the calculation of magnetoelastic oscillations of magnetars with dipole magnetic fields. The perturbation equations obtained in general relativity using Cowling approximation are exploited here for the study of magnetoelastic oscillations. Furthermore, deformations due to magnetic fields and rotations are neglected in the construction of equilibrium models for magnetars. The composition of the crust directly affects its shear modulus, which we calculate using three different nucleon-nucleon interactions: SLy4, SkM, and Sk272. The shear modulus of the crust is found to be enhanced in strong magnetic fields >= 10(17) G for all those Skyrme interactions. It is noted that the shear modulus of the crust for the SLy4 interaction is much higher than those of the SkM and Sk272 interactions in presence of magnetic fields or not. Though we do not find any appreciable change in frequencies of fundamental GME and CME modes with and without magnetized crusts, frequencies of first overtones of CME modes are significantly affected in strong magnetic fields >= 10(17) G. However, this feature is not observed in frequencies of first overtones of GME modes. As in earlier studies, it is also noted that the effects of crusts on frequencies of both types of magnetoelastic modes disappear when the magnetic field reaches the critical field (B > 4 x 10(15) G). Frequencies of GME and CME modes calculated with magnetized crusts based on all three nucleon-nucleon interactions, stellar models and magnetic fields, are compared with frequencies of observed quasiperiodic oscillations (QPOs) in SGR 1806-20 and SGR1900+14. As in earlier studies, this comparison indicates that GME modes are essential to explain all the frequencies, as CME modes can explain only the higher frequencies.
机译:强磁场对磁石的地壳性质具有重要影响。在这里,我们研究了磁力的磁力弹性振荡,考虑到强磁场对地壳组合物(磁化外壳)的影响。我们计算全球磁力弹性(GME)模式以及仅限于地壳(CME)的模式。采用了理想的磁流动正动力学用于用偶极磁场计算磁场的磁力弹性振荡。在此用于研究磁力弹性振荡的研究,以总体相对性获得的扰动方程。此外,在磁铁的平衡模型的构造中忽略了由于磁场和旋转引起的变形。地壳的组成直接影响其剪切模量,我们使用三种不同的核仁核相互作用来计算:SLY4,SKM和SK272。发现外壳的剪切模量在强磁场中增强,对于所有那些那些Skyrme相互作用,在强磁场中得到增强> = 10(17 )g。应注意,壳体的外壳的剪切模量远高于基于磁场存在的SKM和SK272相互作用的剪切模量。虽然我们没有发现基本GME和CME模式的任何明显的变化,但没有磁化外壳,但在强磁场中,CME模式的第一个ovtones的频率显着影响> = 10(17)G.然而,此功能不是在GME模式的第一个overones的频率中观察到。如在早期的研究中,还注意到当磁场到达临界场(B> 4×10(15 )g)时,外壳对两种类型的磁力弹性模式频率的影响消失。基于所有三个核仁核酸相互作用,恒星模型和磁场计算的GME和CME模式的频率与SGR 1806-20和SGR1900 + 14中观察到的QuaSiodic振荡(QPOS)的频率进行比较。如在早期的研究中,这种比较表明GME模式对于解释所有频率至关重要,因为CME模式只能解释较高的频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号