...
首页> 外文期刊>Plasma physics and controlled fusion >The role of ELM filaments in setting the ELM wetted area in MAST and the implications for future devices
【24h】

The role of ELM filaments in setting the ELM wetted area in MAST and the implications for future devices

机译:榆树长丝在桅杆中设定榆树湿润地区的作用及对未来设备的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The ELM wetted area is a key factor in the peak power load during an ELM, as it sets the region over which the ELM energy is deposited. The deposited heat flux at the target is seen to have striations in the profiles that are generated by the arrival of filaments ejected from the confined plasma. The effect of the filaments arriving at the target on the ELM wetted area, and the relation to the midplane mode number is investigated in this paper using infrared (IR) thermography and high speed visible imaging (>10 kHz). Type I ELMs are analysed, as these have the largest heat fluxes and are observed to have toroidal mode numbers of between 5 and 15. The IR profiles during the ELMs show clear filamentary structures that evolve during the ELM cycle. An increasing number of striations at the target is seen to correspond to an increase in the wetted area. Analysis shows that the ratio of the ELM wetted area to the inter-ELM wetted area, a key parameter for ITER, for the type I ELMs is between 3 and 6 for lower single null plasmas and varies with the ELM midplane mode number, as determined by visible measurements. Monte-Carlo modelling of the ELMs is used to understand the variation seen in the wetted area and the effect of an increased mode number; the modelling replicates the trends seen in the experimental data and supports the observation of increased toroidal mode number generating larger target ELM wetted areas. ITER is thought to be peeling unstable which would imply a lower ELM mode number compared to MAST which is peeling-ballooning unstable. The results of this analysis suggest that the lower n peeling unstable ELMs expected for ITER will have smaller wetted areas than peeling-ballooning unstable ELMs. A smaller wetted area will increase the level of ELM control required, therefore a key prediction required for ITER is the expected ELM mode number.
机译:ELM湿润区域是ELM期间峰值功率负载的关键因素,因为它设置了沉积ELM能量的区域。靶的沉积热通量被认为具有在从限制血浆中喷射的长丝的到达产生的曲线中的晶片。使用红外(IR)热成像和高速可见成像(> 10 kHz),在本文中研究了到ELM润湿区域对靶标的靶标的效果,以及与中间板模式数的关系。分析I型ELMS,因为它们具有最大的热通量,并且被观察到具有5至15之间的环形模式数。在ELM期间的IR轮廓显示出在ELM循环期间进化的透明丝状结构。越来越多的目标跨度被认为是对应于湿润区域的增加。分析表明,E elm为eLM的elm湿润区域的elm湿润区域与ELM间湿润区域的比率为3和6,用于较低的单个零等离子体,并且如确定的ELM中间板模式编号变化通过可见测量。榆树的Monte-Carlo建模用于了解湿润区域中看到的变化和增加模式数的效果;该建模复制了实验数据中所见的趋势,并支持对产生更大目标ELM润湿区域的环形模式编号的观察。迭代被认为是不稳定的,与桅杆相比,这将暗示较低的ELM模式编号,这是剥离气球不稳定的。该分析的结果表明,预期的N剥离不稳定的ELMS将具有比剥离膨胀的不稳定榆树更小的湿润区域。较小的湿润区域将增加所需的ELM控制水平,因此浸渍所需的密钥预测是预期的ELM模式编号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号