首页> 外文期刊>Plasma physics and controlled fusion >Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices
【24h】

Liquid metals as a divertor plasma-facing material explored using the Pilot-PSI and Magnum-PSI linear devices

机译:液体金属作为使用Pilot-PSI和Magnum-PSI线性器件探索的侧面等离子体的物料

获取原文
获取原文并翻译 | 示例
           

摘要

For DEMO and beyond, liquid metal plasma-facing components are considered due to their resilience to erosion through flowed replacement, potential for cooling beyond conduction and inherent immunity to many of the issues of neutron loading compared to solid materials. The development curve of liquid metals is behind that of e.g. tungsten however, and tokamak-based research is currently somewhat limited in scope. Therefore, investigation into linear plasma devices can provide faster progress under controlled and well-diagnosed conditions in assessing many of the issues surrounding the use of liquid metals. The linear plasma devices Magnum-PSI and Pilot-PSI are capable of producing DEMO-relevant plasma fluxes, which well replicate expected divertor conditions, and the exploration of physics issues for tin (Sn) and lithium (Li) such as vapour shielding, erosion under high particle flux loading and overall power handling are reviewed here. A deeper understanding of erosion and deposition through this work indicates that stannane formation may play an important role in enhancing Sn erosion, while on the other hand the strong hydrogen isotope affinity reduces the evaporation rate and sputtering yields for Li. In combination with the strong redeposition rates, which have been observed under this type of high-density plasma, this implies that an increase in the operational temperature range, implying a power handling range of 20-25 MW m(-2) for Sn and up to 12.5 MW m(-2) for Li could be achieved. Vapour shielding may be expected to act as a self-protection mechanism in reducing the heat load to the substrate for off-normal events in the case of Sn, but may potentially be a continual mode of operation for Li.
机译:对于演示和超越,由于它们通过流动的替代物的腐蚀而蚀刻侵蚀,因此考虑了液体金属等离子体的组件,其与固体材料相比,冷却超越传导和固有的抗扰度的可能性。液体金属的发展曲线是例如液体金属的曲线。然而,钨和基于Tokamak的研究目前在某种程度上有所限制。因此,进入线性等离子体器件的调查可以在评估使用液态金属的许多问题时提供更快的进展。线性等离子体器件Magnum-PSI和Pilot-PSI能够生产语音相关的等离子体助熔剂,该势率良好地复制预期的偏移变性条件,以及锡(Sn)和锂(Li)等物理问题的探索,如蒸气屏蔽,腐蚀在高颗粒磁通量下,在此处审查了整体功率处理。通过这项工作更深入地了解侵蚀和沉积表明,锡烷形成可能在增强Sn侵蚀方面发挥重要作用,而另一方面则强的氢同位素亲和力降低了Li的蒸发速率和溅射产率。结合在这种类型的高密度等离子体下观察到的强度重新沉积速率,这意味着运行温度范围的增加,暗示SN和SN的功率处理范围为20-25 mW mW(-2)可以实现高达12.5兆瓦的MW MW(-2)。可以预期蒸汽屏蔽作为在SN的情况下将热负荷降低到衬底的自我保护机制,但可能是LI的恒定操作模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号