首页> 外文期刊>Plasma Science & Technology >The far-field plasma characterization in a 600W Hall thruster plume by laser-induced fluorescence
【24h】

The far-field plasma characterization in a 600W Hall thruster plume by laser-induced fluorescence

机译:激光诱导荧光600W霍尔推进器羽流中的远场等离子体表征

获取原文
获取原文并翻译 | 示例
       

摘要

Non-intrusive characterization of the singly ionized xenon velocity in Hall thruster plume using laser induced fluorescence (LIF) is critical for constructing a complete picture of plume plasma, deeply understanding the ion dynamics in the plume, and providing validation data for numerical simulation. This work presents LIF measurements of singly ionized xenon axial velocity on a grid ranging from 100 to 300 mm in axial direction and from 0 to 50 mm in radial direction for a 600W Hall thruster operating at the nominal condition of discharge voltage 300 V and discharge current 2 A, the influence of discharge voltage is investigated as well. The ion velocity distribution function (IVDF) results in the far-field plume demonstrate a profile of bimodal IVDFs, especially prominent at radial distances greater than channel inner radius of 22 mm at axial position of 100 mm, which is quite different from that of the near-field plume where bimodal IVDFs occur in the central core region for the same power Hall thruster when compared to previous LIF measurements of BHT-600 by Hargus (2010 WJ. Propulsion Power 26 135). Beyond 100 mm, only single-peak IVDFs are measured. The two-dimensional ion velocity vector field indicates the bimodal axial IVDF is merely a geometry effect for the annular discharge channel in the far-field plume. Results about the IVDF, the most probable velocity and the accelerating potential profile along the centerline all indicate that ions are still accelerating at axial distances greater than 100 mm, and the maximum most probable velocity measured at 300 mm downstream of the exit plane is about 19 km s(-1). In addition, the most probable velocity of ions along radial direction changes a little except the lower velocity ion populations in the bimodal IVDF cases. The ion temperature at axial distances of 10 and 300 mm oscillates along the radial direction, while the ion temperature first increases, and then decreases for the 200 mm case. Finally, the axial position for the ion peak axial velocity on the thruster centerline is shifted upstream for higher discharge voltages, and the velocity curve is becoming steeper with the discharge voltage before reaching the maximum. This observation can be used as a criterion to optimize the thruster performance.
机译:使用激光诱导荧光(LiF)的霍尔推进器羽流中单电离的氙气速度的非侵扰性表征对于构建羽流等离子体的完整图像至关重要,深入了解羽流中的离子动力学,并提供数值模拟的验证数据。该工作在轴向范围内的栅格范围内的网格上和径向范围为0至50mm的网格上的单独电离氙轴向速度的LiF测量为600W霍尔推进器在排放电压300V和放电电流的标称条件下操作。如图2所示,还研究了放电电压的影响。离子速度分布函数(IVDF)导致远场羽流的概况表明双峰IVDFS的轮廓,特别是在径向距离大于100mm的轴向位置的径向距离,特别是与哈尔格斯的之前的BHT-600的以前的LIF测量相比,在中央核心区域发生在中央核心区域的近场羽流,其中哈尔格斯(2010 WJ。推进动力26 135)。超过100毫米,只测量单峰值IVDF。二维离子速度矢量场表示双峰轴向IVDF仅仅是远场羽流环形排出通道的几何效果。结果关于IVDF,沿着中心线的最可能速度和加速潜在轮廓都表明离子在大于100mm的轴向距离处仍然加速,并且在出口平面下游300mm处测量的最大可能速度约为19 KM S(-1)。此外,除了双峰IVDF病例中的较低速度离子群之外,离子的最可能的离子速度变化。离子温度在10和300mm的轴向距离沿径向方向振荡,而离子温度首先增加,然后为200mm壳体减小。最后,推动中心线上的离子峰值轴向速度的轴向位置被移位到较高的放电电压上游,并且在达到最大值之前,速度曲线变得越陡。该观察可以用作优化推进器性能的标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号