首页> 外文期刊>Plasma Sources Science & Technology >Spatio-temporal plasma heating mechanisms in a radio frequency electrothermal microthruster
【24h】

Spatio-temporal plasma heating mechanisms in a radio frequency electrothermal microthruster

机译:射频电热微刻器中的时空等离子体加热机制

获取原文
获取原文并翻译 | 示例
           

摘要

Low-power micro-propulsion sources are currently being developed for a variety of space missions. Electrothermal plasma thrusters are of specific interest since they enable spatial control of the power deposition to the propellant gas. Understanding the mechanisms whereby electrical power is coupled to the propellant will allow for optimization of the heating and fuel efficiencies of electrothermal sources. Previous studies of radio frequency (RF) plasmas have shown a dependence of the gas and electron heating mechanisms on the local collisionality. This is of particular importance to thrusters due to the large pressure gradients that exist between the inlet and outlet when expanding into vacuum. In this work, phase-resolved optical emission spectroscopy and numerical simulations were employed to study plasma heating in an asymmetric RF (13.56 MHz) electrothermal microthruster operating in argon between 186–226 Pa (1.4–1.7 Torr) plenum pressure, and between 130–450 V (0.2–5W). Three distinct peaks in the phase-resolved Ar(2p1) electron impact excitation rate were observed, arising from sheath collapse heating, sheath expansion heating, and heating via secondary electron collisions. These experimental findings were corroborated with the results of two-dimensional fluid/Monte Carlo simulations performed using the Hybrid Plasma Equipment Model (HPEM). The influence of each mechanism with respect to the position within the plasma source during an α-γ mode transition, where plasma heating is driven via bulk and sheath heating, respectively, was investigated. Sheath dynamics were found to dictate the electron heating at the inlet and outlet, this is distinct from the center of the thruster where interactions of secondary electrons were found to be the dominant electron heating mechanism. Optimization of the heating mechanisms that contribute to the effective exhaust temperature will directly benefit electrothermal thrusters used on miniaturized satellite platforms.
机译:目前正在为各种空间任务开发出低功耗微型推进源。电热等离子体推进器具有特定的兴趣,因为它们使得能够对推进剂气体的空间控制能够进行空间控制。理解电力耦合到推进剂的机制将允许优化电热源的加热和燃料效率。以前的射频(RF)等离子体研究已经示出了气体和电子加热机制对局部收集的依赖性。这对推动者特别重要,因为在进气时在入口和出口之间存在的大的压力梯度。在该工作中,采用相位分辨的光发射光谱和数值模拟来研究在186-226Pa(1.4-1.7托)压力的氩气中的不对称RF(13.56MHz)电热微生物调节中的等离子体加热,在186-226Pa(1.4-1.7托)之间,以及130- 450 V(0.2-5W)。观察到相位分辨的AR(2P1)电子碰撞激发速率中的三个不同峰,由鞘塌陷加热,鞘膨胀加热和通过二次电子碰撞加热而产生。这些实验结果与使用混合等离子体设备模型(HPEM)进行的二维流体/蒙特卡罗模拟的结果进行了证实。研究了各种机理相对于α-γ模式转变期间等离子体源内的位置的影响。研究了等离子体加热通过散装和护套​​加热驱动等离子体加热。发现鞘动力学被发现在入口和出口处决定电子加热,这与推进器的中心不同,其中发现二次电子的相互作用是主加热机构。优化有助于有效排气温度的加热机构将直接益处在小型化卫星平台上使用的电热推进器。

著录项

  • 来源
  • 作者单位

    York Plasma Institute Department of Physics University of York Heslington York YO10 5DD United Kingdom;

    York Plasma Institute Department of Physics University of York Heslington York YO10 5DD United Kingdom;

    York Plasma Institute Department of Physics University of York Heslington York YO10 5DD United Kingdom;

    Space Plasma Power and Propulsion Laboratory Research School of Physics and Engineering The Australian National University ACT 0200 Australia;

    Space Plasma Power and Propulsion Laboratory Research School of Physics and Engineering The Australian National University ACT 0200 Australia;

    Space Plasma Power and Propulsion Laboratory Research School of Physics and Engineering The Australian National University ACT 0200 Australia;

    University of Michigan Dept. of Electrical and Computer Engineering 1301 Beal Ave. Ann Arbor MI 48109-2122 United States of America;

    University of Michigan Dept. of Electrical and Computer Engineering 1301 Beal Ave. Ann Arbor MI 48109-2122 United States of America;

    York Plasma Institute Department of Physics University of York Heslington York YO10 5DD United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;
  • 关键词

    electric propulsion; electron heating; gas heating; hollow cathode; PROES; dc bias;

    机译:电动推进;电子加热;气体加热;空心阴极;PROES;直流偏见;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号