...
首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part D. Journal of Automobile Engineering >Performance comparison of electric-vehicle drivetrain architectures from a vehicle dynamics perspective
【24h】

Performance comparison of electric-vehicle drivetrain architectures from a vehicle dynamics perspective

机译:车辆动力学架构从车辆动力学视角的性能比较

获取原文
获取原文并翻译 | 示例
           

摘要

Recent electric vehicle studies in literature utilize electric motors within an anti-lock braking system, traction-control system, and/or vehicle-stability controller scheme. Electric motors are used as hub motors, on-board motors, or axle motors prior to the differential. This has led to the need for comparing these different drivetrain architectures with each other from a vehicle dynamics standpoint. With this background in place, using MATLAB simulations, these three drivetrain architectures are compared with each other in this study. In anti-lock braking system and vehicle-stability controller simulations, different control approaches are utilized to blend the electric motor torque with hydraulic brake torque; motor ABS, torque decomposition, and optimal slip-tracking control strategies. The results for the anti-lock braking system simulations can be summarized as follows: (1) Motor ABS strategy improves the stopping distance compared to the standard anti-lock braking system. (2) In case the motors are not solely capable of providing the required braking torque, torque decomposition strategy becomes a good solution. (3) Optimal slip-tracking control strategy improves the stopping distance remarkably compared to the standard anti-lock braking system, motor anti-lock braking system, and torque decomposition strategies for all architectures. The vehicle-stability controller simulation results can be summarized as follows: (1) higher affective wheel inertia of the on-board and hub motor architecture dictates a higher need of wheel torque in order to generate the tire force required for the desired yaw rate tracking. A higher level of torque causes a higher level of tire slip. (2) Optimal slip-tracking control strategy reduces the tire slip trends drastically and distributes the traction/braking action to each tire with the control-allocation algorithm specifying the reference slip values. This reduces reference tire slip-tracking error and reduces vehicle sideslip angle. (3) Tire slip trends are lower with the hub motor architecture, compared to the other architectures, due to more precise slip control.
机译:文献中最近的电动车辆研究利用防锁制动系统内的电动机,牵引控制系统和/或车辆稳定控制器方案。电动机用作差动前的集线电机,车载电机或轴电机。这导致了需要将这些不同的动力传动装置与车辆动态的角度相互比较。在此背景下,使用MATLAB模拟,在本研究中相互比较这三种动力传动系统。在防锁制动系统和车辆稳定控制器模拟中,利用不同的控制方法与液压制动扭矩混合电动机扭矩;电机ABS,扭矩分解和最佳滑动跟踪控制策略。防锁制动系统模拟的结果可以概括如下:(1)与标准防抱死制动系统相比,电机ABS策略改善了停止距离。 (2)如果电动机不仅能够提供所需的制动扭矩,则扭矩分解策略变为良好的解决方案。 (3)最佳滑动跟踪控制策略改善了与标准防抱死制动系统,电动机防锁制动系统和所有架构的扭矩分解策略相比显着的停止距离。车辆稳定性控制器仿真结果可以概括如下:(1)车载和轮毂电机架构的更高的情感车轮惯性决定了车轮扭矩的更高需要,以便产生所需的横摆率跟踪所需的轮胎力。更高水平的扭矩导致较高水平的轮胎滑动。 (2)最佳滑动跟踪控制策略大大降低了轮胎滑动趋势,并通过指定参考滑动值的控制分配算法将牵引/制动动作分配给每个轮胎。这减少了参考轮胎滑动跟踪误差并减少了车辆侧滑角。 (3)轮毂电机架构与其他架构相比,轮胎滑动趋势较低,由于更精确的滑动控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号