首页> 外文期刊>Biotechnology Progress >Biocommodity engineering [Review]
【24h】

Biocommodity engineering [Review]

机译:生物商品工程[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

The application of biotechnology to the production of commodity products (fuels, chemicals, and materials) offering benefits in terms of sustainable resource supply and environmental quality is an emergent area of intellectual endeavor and industrial practice with great promise. Such "biocommodity engineering" is distinct from biotechnology motivated by health care at multiple levels, including economic driving forces, the importance of feedstocks and cost-motivated process engineering, and the scale of application. Plant biomass represents both the dominant foreseeable source of feedstocks for biotechnological processes as well as the only foreseeable sustainable source of organic fuels, chemicals, and materials. A variety of forms of biomass, notably many cellulosic feedstocks, are potentially available at a large scale and are cost-competitive with low-cost petroleum whether considered on a mass or energy basis, and in terms of price defined on a purchase or net basis for both current and projected mature technology, and on a transfer basis for mature technology. Thus the central, and we believe surmountable, impediment to more widespread application of biocommodity engineering Is the general absence of low-cost processing technology. Technological and research challenges associated with converting plant biomass into commodity products are considered relative to overcoming the recalcitrance of cellulosic biomass (converting cellulosic biomass into reactive intermediates) and product diversification (converting reactive intermediates into useful products). Advances are needed in pretreatment technology to make cellulosic materials accessible to enzymatic hydrolysis, with increased attention to the fundamental chemistry operative in pretreatment processes likely to accelerate progress. Important biotechnological challenges related to the utilization of cellulosic biomass include developing cellulase enzymes and microorganisms to produce them, fermentation of xylose and other nonglucose sugars, and "consolidated bioprocessing" in which cellulase production, cellulose hydrolysis, and fermentation of soluble carbohydrates to desired products occur in a single process step. With respect to product diversification,a distinction is made between replacement of a fossil resource-derived chemical with a biomass-derived chemical of identical composition and substitution of a biomass-derived chemical with equivalent functional characteristics but distinct composition. The substitution strategy involves larger transition issues but is seen as more promising in the long term. Metabolic engineering pursuant to the production of biocommodity products requires host organisms with properties such as the ability to use low-cost substrates, high product yield, competitive fitness, and robustness in industrial environments. In many cases, it is likely to be more successful to engineer a desired pathway into an organism having useful industrial properties rather than trying to engineer such often multi-gene properties into host organisms that do not have them naturally. Identification of host organisms with useful industrial properties and development of genetic systems for these organisms is a research challenge distinctive to biocommodity engineering. Chemical catalysis and separations technologies have important roles to play in downstream processing of biocommodity products and involve a distinctive set of challenges relative to petrochemical processing. At its current nascent state of development, the definition and advancement of the biocommodity field can benefit from integration at multiple levels.
机译:生物技术在商品产品(燃料,化学品和材料)的生产中的应用在可持续资源供应和环境质量方面具有优势,这是知识努力和工业实践的新兴领域,并具有广阔的前景。此类“生物商品工程”与卫生保健在多个层面上推动的生物技术不同,包括经济驱动力,原料和成本驱动的工艺工程的重要性以及应用规模。植物生物量既是生物技术过程中可预见的主要原料来源,又是有机燃料,化学物质和材料的唯一可预见的可持续来源。各种形式的生物质,尤其是许多纤维素原料,都可能大规模获得,并且无论是按质量还是能源,以及根据购买或净价格确定的价格,都可以与低成本石油竞争,适用于当前和预计的成熟技术,以及基于转让的成熟技术。因此,普遍认为缺乏低成本加工技术是阻碍生物商品工程更广泛应用的主要因素,我们认为这是可克服的。相对于克服纤维素生物质的顽固性(将纤维素生物质转化为反应性中间体)和产品多样化(将反应性中间体转化为有用产品)而言,与将植物生物质转化为商品相关的技术和研究挑战被认为是重要的。预处理技术需要取得进展,以使纤维素材料易于酶解,同时越来越关注可能加速进程的预处理过程中的基本化学作用。与利用纤维素生物质有关的重要生物技术挑战包括开发纤维素酶和微生物以生产纤维素酶,木糖和其他非葡萄糖糖发酵以及“合并生物处理”,其中发生纤维素酶生产,纤维素水解以及可溶性碳水化合物发酵为所需产品的过程。在单个过程步骤中。关于产品多样化,在用具有相同组成的生物质衍生的化学物质替代化石资源衍生的化学物质和用具有相同功能特性但组成不同的生物质衍生的化学物质进行替换之间进行区分。替代策略涉及更大的过渡问题,但从长远来看,它被认为更有希望。根据生物商品产品的生产进行的代谢工程需要宿主生物具有以下特性,例如使用低成本底物的能力,高产品产量,具有竞争力的适应性以及在工业环境中的坚固性。在许多情况下,将所需的途径改造成具有有用的工业特性的生物可能比尝试将通常具有多基因特性的改造成宿主的自然没有宿主的生物更成功。鉴定具有有用工业性质的宿主生物以及开发这些生物的遗传系统是生物商品工程所特有的研究挑战。化学催化和分离技术在生物商品产品的下游加工中起着重要作用,并且相对于石化加工具有一系列独特的挑战。在目前的新生发展状态下,生物商品领域的定义和进步可以从多层次的整合中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号