首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >In vitro In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue
【24h】

In vitro In vitro cyclic compressive loads potentiate early osteogenic events in engineered bone tissue

机译:体外体外循环压缩载荷强调工程骨组织的早期骨质发生事件

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Application of dynamic mechanical loads on bone and bone explants has been reported to enhance osteogenesis and mineralization. To date, published studies have incorporated a range of cyclic strains on 3D scaffolds and platforms to demonstrate the effect of mechanical loading on osteogenesis. However, most of the loading parameters used in these studies do not emulate the in vivo loading conditions. In addition, the scaffolds/platforms are not representative of the native osteoinductive environment of bone tissue and hence may not be entirely accurate to study the in vivo mechanical loading. We hypothesized that biomimicry of physiological loading will potentiate accelerated osteogenesis in bone grafts. In this study, we present a compression bioreactor system that applies cyclic compression to cellular grafts in a controlled manner. Polycaprolactone‐β Tricalcium Phosphate (PCL‐TCP) scaffolds seeded with Mesenchymal Stem Cells (MSC) were cyclically compressed in bioreactor for a period of 4 weeks at 1 Hz and physiological strain value of 0.22% for 4 h per day. Gene expression studies revealed increased expressions of osteogenesis‐related genes (Osteonectin and COL1A1) on day 7 of cyclic loading group relative to its static controls. Cyclic compression resulted in a 3.76‐fold increase in the activity of Alkaline Phosphatase (ALP) on day 14 when compared to its static group ( p ??0.001). In addition, calcium deposition of cyclic loading group was found to attain saturation on day 14 (1.96 fold higher than its static scaffolds). The results suggested that cyclic, physiological compression of stem cell‐seeded scaffolds generated highly mineralized bone grafts. ? 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2366–2375, 2017.
机译:据报道,摘要动态机械载荷对骨和骨外植体的应用,提升了骨开发和矿化。迄今为止,已发表的研究已纳入3D支架和平台上的一系列循环菌株,以证明机械负载对骨质发生的影响。然而,这些研究中使用的大多数加载参数不会模拟体内负载条件。此外,支架/平台不是代表骨组织的天然骨诱导环境,因此可能并不完全准确地研究体内机械负载。我们假设生理负荷的生物化将在骨移植物中加速加速骨质发生。在本研究中,我们提出了一种压缩生物反应器系统,其以受控方式将循环压缩应用于蜂窝移植物。将磷酸盐(PCL-TCP)β三丙酸钙(PCL-TCP)支架播种,在生物反应器中循环压缩,在1Hz的1 Hz,每天4小时的生理应变值循环压缩4周。基因表达研究揭示了相对于其静态对照的第7天在第7天的骨开发相关基因(OsteonIn和Col1a1)的表达增加。与其静态基团相比,在第14天在第14天产生循环压缩导致3.76倍的碱性磷酸酶(ALP)的活性增加(p≤≤0.001)。此外,发现循环加载组的钙沉积在第14天(比其静态支架高1.96倍)获得饱和度。结果表明,干细胞种子支架的环状,生理压缩产生高矿化骨移植物。还2016 Wiley期刊,Inc。J生物保解率B部分B:苹果生物检索物,105B:2366-2375,2017。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号