...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy
【24h】

Biomaterial granules used for filling bone defects constitute 3D scaffolds: porosity, microarchitecture and molecular composition analyzed by microCT and Raman microspectroscopy

机译:用于填充骨缺陷的生物材料颗粒构成3D支架:通过MicroCT和Raman Micropectock分析的孔隙率,微体系结构和分子组合物

获取原文
获取原文并翻译 | 示例
           

摘要

Biomaterials are used in the granular form to fill small bone defects. Granules can be prepared with a grinder from trabecular bone samples or provided as synthetic biomaterials by industry. Granules occupy the 3D-space and create a macroporosity allowing invasion of vascular and bone cells when the inter-granular pores are larger than 300 mu m. We compared the 3D-porosity of granule stacks obtained or prepared with nine biomaterials Osteopure((R)), Lubboc (R), Bio-Oss (R), CopiOs (R), TCP Dental (R), TCP Dental HP (R), KeraOs (R), and TCH (R) in comparison with that of human trabecular bone. For each biomaterial, two sizes of granules were analyzed: 250-1000 and 1000-2000 mu m. Microcomputed tomography determined porosity and microarchitectural characteristics of granular stacks and Raman microspectroscopy was used to analyze their composition. Stacks of 250-1000 mu m granules had a much lower porosity than 1000-2000 mu m granules and the maximum frequency of pores was always centered at 200-250 mu m. One biomaterial contained substantial amount of cortical bone (Bio-Oss (R)). The highest porosity and pore size was obtained with TCP Dental HP. Raman spectroscopy found differences in biomaterials of the same composition. Stacks of granules represent 3D scaffolds resembling trabecular bone with an interconnected porous microarchitecture. Small granules have created pores 300 mu m in diameter; this can interfere with vascular colonization. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 415-423, 2019.
机译:生物材料以颗粒形式使用以填充小的骨缺损。颗粒可以用来自小梁骨样品的研磨机制备,或者通过工业作为合成生物材料提供。颗粒占用3D空间,并在粒状孔大于300μm时允许允许血管和骨细胞侵袭的宏观度。比较了颗粒堆叠的3D孔隙率,或用九种生物材料骨质疏松((R)),Lubboc(R),生物OSS(R),Copios,TCP牙科(R),TCP牙科HP(r与人的小梁骨相比,Keraos和Tch(R)。对于每种生物材料,分析了两种粒径:250-1000和1000-2000 mu m。微型断层扫描确定粒状叠层的孔隙率和微体系结构,用于分析它们的组合物。堆叠250-1000 mu m颗粒的孔隙率远低于1000-2000 mu m颗粒,并且孔的最大频率始终以200-250μmm为中心。一种生物材料包含大量皮质骨(Bio-OSS(R))。用TCP牙科HP获得最高的孔隙率和孔径。拉曼光谱发现相同组成的生物材料的差异。堆栈的颗粒代表了一种类似于与互联的多孔微体系结构的小梁骨的3D支架。小颗粒形成孔&300μm的直径;这可能干扰血管结肠化。 (c)2018 Wiley期刊,Inc。J生物保解员B:Appl Biomater,107B:415-423,2019。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号