...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Mechanical and in vitro degradation behavior of magnesium-bioactive glass composites prepared by SPS for biomedical applications
【24h】

Mechanical and in vitro degradation behavior of magnesium-bioactive glass composites prepared by SPS for biomedical applications

机译:SPS用于生物医学应用的镁 - 生物活性玻璃复合材料的机械和体外降解行为

获取原文
获取原文并翻译 | 示例
           

摘要

In order to make magnesium (Mg) a successful candidate for fracture fixation devices, it is imperative to control the corrosion rate and enhance its elastic modulus. In the present work, we have prepared bioactive glass (BG) reinforced magnesium composite using spark plasma sintering (SPS). Simultaneous application of heat and pressure during SPS decreased the softening point of BG (600 degrees C), allowing it to coat the Mg particles partially. As a result, BG was found along the Mg particle boundaries, which was confirmed by elemental mapping. Addition of BG improved microhardness and elastic modulus of Mg-BG composites. Corrosion behavior was studied by hydrogen evolution and immersion corrosion in phosphate buffered saline (PBS). After 64 h of immersion, Mg-10 wt % BG composite showed highest corrosion resistance. Quantitative micro-computed tomography (micro-CT) results indicated porosity increase in Mg-BG composites during immersion. The maximum increase in porosity (1.66%) was noticed for pure Mg while the minimum for Mg-10 wt % BG composite. MG63 cell-material interactions, using extract method, showed good cytocompatibility for Mg-10 wt % BG composite. The concentration of Mg ion in cell culture media was measured using atomic absorption spectroscopy after 24 h immersion of Mg/BG composites. The results indicated that using BG as reinforcement and SPS as sintering method; we can prepare corrosion resistant and high modulus Mg-BG composites that can be used for fabricating bone fracture fixation plates. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 352-365, 2019.
机译:为了使镁(Mg)成为断裂固定装置的成功候选者,必须控制腐蚀速率并增强其弹性模量。在目前的工作中,我们使用火花等离子体烧结(SPS)制备了生物活性玻璃(BG)增强镁复合材料。在SP期间同时施加热量和压力降低了BG的软化点(600℃),允许其部分地涂覆Mg颗粒。结果,沿着Mg颗粒边界发现BG,其通过元素映射确认。添加BG改善的Mg-Bg复合材料的微硬度和弹性模量。通过氢气进化和磷酸盐缓冲盐水(PBS)中的浸渍腐蚀来研究腐蚀行为。浸渍64小时后,Mg-10wt%Bg复合材料显示出最高的耐腐蚀性。定量微型计算机断层扫描(Micro-CT)结果表明浸泡过程中Mg-Bg复合材料的孔隙率增加。纯Mg的孔隙率的最大增加(1.66%),而Mg-10wt%Bg复合材料的最小值。使用提取物方法,Mg63细胞材料相互作用显示出Mg-10wt%BG复合材料的良好细胞组分。在浸渍Mg / Bg复合材料24小时后使用原子吸收光谱法测量细胞培养基中Mg离子的浓度。结果表明,使用BG作为增强和SPS作为烧结方法;我们可以制备可用于制造骨折固定板的耐腐蚀性和高模量Mg-BG复合材料。 (c)2018 Wiley期刊,Inc.J生物保解员B部分B:Appl Biomater,107B:352-365,2019。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号