...
首页> 外文期刊>Journal of Geophysical Research, C. Oceans: JGR >Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth
【24h】

Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth

机译:南极海冰厚度和冰雪转换从大气再分析和被动微波雪深

获取原文
获取原文并翻译 | 示例
           

摘要

Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979–2001 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April–October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow-ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10–20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.
机译:被动微波雪深,冰浓度和冰运动估计与来自1979 - 2001年的欧洲中等天气预报(ECMWF)再分析(ECMWF)的降雪相结合,从1979 - 2001年估计了雪地转换的普遍存在(雪冰形成)在南极级别的海冰在4月至10月。雪地冰在整个生长季节的所有地区都是无处不在的。计算的雪冰厚度落在大多数地区的冰核分析的估计范围内。然而,这种分析的不确定性和原位数据限制了雪深和雪地生产的有用性,以评估ERA-40降雪的准确性。东南极是一个例外,其中计算出的雪地冰产量超过广泛区域观察到的冰厚度,表明ERA-40沉淀在那里过高。雪冰厚度变异性强烈控制不仅仅是通过积雪累积率,也受到冰分歧。令人惊讶的是,雪地生产在很大程度上与雪深层无关,表明后者可能是全积雪累积的差。使用冰冰的存在作为近零的干舷的代理指示器,我们研究了避免卫星雪深度的水平冰厚度的可能性。 9月份平均水平冰厚度的最佳估计为53厘米,距离船舶观测的51厘米良好。误差估计为10-20厘米,类似于观察到的际际和区域可变性。然而,这与由卫星高度计确定的冰厚度的预期误差相当。卫星雪深度检索的改善将有益于这两种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号