首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with advanced very high resolution radiometer thermal imagery
【24h】

Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Comparison with advanced very high resolution radiometer thermal imagery

机译:熔岩流冷却的数值模型应用于1997年的Okmok爆发:与高级高分辨率辐射计热图像的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Throughout February and March 1997, Okmok Volcano, in the eastern Aleutian Islands of Alaska, erupted a 6-km-long lava flow of basaltic ′a′a within its caldera. In the first part of the study a numerical model for lava flow cooling was developed by Patrick et al. and applied to the flow to better understand the nature of its cooling. In this second part of the study, the model predictions for lava surface temperature over a 200-day cooling period were compared to advanced very high resolution radiometer (AVHRR) thermal imagery. Various methods were used to extract the subpixel lava temperature from the AVHRR pixel-integrated values, including the dual-band method and pixel merging. Inherent to these approaches is the multicomponent modeling of the lava surface temperature. Whereas active flows have been shown to have several thermal components, so, too, do flows undergoing extended cooling. Because of the dependence of the methods on the AVHRR instantaneous field of view (IFOV), the scan-dependent IFOV dimensions and overlap values were considered. Results from Patrick et al. indicate that convective heat loss from the surface largely controls surface temperature during extended cooling, but the functions governing this heat loss mechanism are poorly understood. AVHRR-derived temperatures from this part of the study suggest that values for the convective heat transfer coefficient for this flow were most commonly between 50 and 100 W m?2 K?1 and generally above 25 W m?2 K?1. These results are in agreement with previously measured values from the field but are significantly higher than those assumed in other remote sensing studies of cooling lava. Also, the AVHRR data corroborate the modeled prediction of seasonal warming of the lava surface.
机译:在2019年2月和3月,Okmok Volcano在阿拉斯加的东部阿拉斯加东部岛屿,在其Caldera内爆发了6公里长的玄武岩'A'a。在研究的第一部分,由Patrick等人开发了一种熔岩流冷却的数值模型。并应用于流动以更好地了解其冷却的性质。在该研究的第二部分中,将熔岩表面温度超过200天冷却期的模型预测与先进的非常高分辨率辐射计(AVHRR)热图像进行比较。各种方法用于从AVHRR像素集成值中提取子像素熔岩温度,包括双频法和像素合并。这些方法固有的是熔岩表面温度的多组分建模。虽然已显示有源流动有几个热部件,因此,也是经历延长冷却的流动。由于该方法对AVHRR瞬时视野(IFOV)的依赖性,所考虑扫描依赖的IFOV尺寸和重叠值。 Patrick等人的结果。表明从表面的对流热损失在很大程度上控制延长冷却过程中的表面温度,但是控制该热损失机制的功能很差。来自该研究部分的AVHRR衍生的温度表明,这种流动的对流传热系数的值最常见于50至100Wm≤2k≤1,通常高于25wm≤2k≤1。这些结果与前面的现实情况的值达成协议,但显着高于冷却熔岩的其他遥感研究中假设的值。此外,AVHRR数据证实了熔岩表面季节变暖的建模预测。

著录项

  • 来源
  • 作者

    M. R. Patrick; J. Dehn; K. Dean;

  • 作者单位

    Alaska Volcano Observatory Geophysical Institute University of Alaska Fairbanks Fairbanks Alaska USA;

    Alaska Volcano Observatory Geophysical Institute University of Alaska Fairbanks Fairbanks Alaska USA;

    Alaska Volcano Observatory Geophysical Institute University of Alaska Fairbanks Fairbanks Alaska USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号