首页> 外文期刊>Biotechnology Progress >Augmented Biosynthesis of Cadmium Sulfide Nanoparticles by Genetically Engineered Escherichia Coli
【24h】

Augmented Biosynthesis of Cadmium Sulfide Nanoparticles by Genetically Engineered Escherichia Coli

机译:基因工程大肠杆菌增强了硫化镉纳米颗粒的生物合成

获取原文
获取原文并翻译 | 示例
           

摘要

Microorganisms can complex and sequester heavy metals, rendering them promising living factories for nanoparticle production. Glutathione (GSH) is pivotal in cadmium sulfide (CdS) nanoparticle formation in yeasts and its synthesis necessitates two enzymes: γ-glutamylcys-teine synthetase (γ-GCS) and glutathione synthetase (GS). Hereby, we constructed two recombinant E. coli ABLE C strains to over-express either γ-GCS or GS and found that γ-GCS over-expression resulted in inclusion body formation and impaired cell physiology, whereas GS over-expression yielded abundant soluble proteins and barely impeded cell growth. Upon exposure of the recombinant cells to cadmium chloride and sodium sulfide, GS over-expression augmented GSH synthesis and ameliorated CdS nanoparticles formation. The resultant CdS nanoparticles resembled those from the wild-type cells in size (2-5 nm) and wurtzite structures, yet differed in dispersibility and elemental composition. The maximum particle yield attained in the recombinant E. coli was ~2.5 times that attained in the wild-type cells and considerably exceeded that achieved in yeasts. These data implicated the potential of genetic engineering approach to enhancing CdS nanoparticle biosynthesis in bacteria. Additionally, E. coli-based biosynthesis offers a more energy-efficient and eco-friendly method as opposed to chemical processes requiring high temperature and toxic solvents.
机译:微生物可以使重金属络合和螯合,使它们成为有生命的纳米粒子生产工厂。谷胱甘肽(GSH)在酵母中的硫化镉(CdS)纳米颗粒形成过程中起着关键作用,其合成需要两种酶:γ-谷氨酰半胱氨酸-合成酶(γ-GCS)和谷胱甘肽合成酶(GS)。因此,我们构建了两个重组大肠杆菌ABLE C菌株以过度表达γ-GCS或GS,发现γ-GCS的过度表达导致包涵体形成和细胞生理功能受损,而GS的过度表达产生丰富的可溶性蛋白并且几乎没有阻碍细胞的生长。重组细胞暴露于氯化镉和硫化钠后,GS的过表达增强了GSH的合成并改善了CdS纳米颗粒的形成。所得的CdS纳米颗粒类似于野生型细胞的CdS纳米颗粒,其尺寸(2-5 nm)和纤锌矿结构相似,但分散性和元素组成却有所不同。在重组大肠杆菌中获得的最大颗粒产量约为野生型细胞的2.5倍,大大超过了酵母中的产量。这些数据暗示了基因工程方法增强细菌中CdS纳米颗粒生物合成的潜力。此外,与需要高温和有毒溶剂的化学过程相比,基于大肠杆菌的生物合成提供了一种更加节能和环保的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号