首页> 外文期刊>Biotechnology Progress >Skeletal Myotube Integration with Planar Microelectrode Arrays In Vitro for Spatially Selective Recording and Stimulation: A Comparison of Neuronal and Myotube Extracellular Action Potentials
【24h】

Skeletal Myotube Integration with Planar Microelectrode Arrays In Vitro for Spatially Selective Recording and Stimulation: A Comparison of Neuronal and Myotube Extracellular Action Potentials

机译:骨骼肌管与平面微电极阵列的体外集成的空间选择性记录和刺激:神经元和肌管细胞外动作电位的比较。

获取原文
获取原文并翻译 | 示例
           

摘要

Microelectrode array (MEA) technology holds tremendous potential in the fields of biodetec-tion, lab-on-a-chip applications, and tissue engineering by facilitating noninvasive electrical interaction with cells in vitro. To date, significant efforts at integrating the cellular component with this detection technology have worked exclusively with neurons or cardiac myocytes. We investigate the feasibility of using MEAs to record from skeletal myotubes derived from primary myoblasts as a way of introducing a third electrogenic cell type and expanding the potential end applications for MEA-based biosensors. We find that the extracellular action potentials (EAPs) produced by spontaneously contractile myotubes have similar amplitudes to neuronal EAPs. It is possible to classify myotube EAPs by biological signal source using a shape-based spike sorting process similar to that used to analyze neural spike trains. Successful spike-sorting is indicated by a low within-unit variability of myotube EAPs. Additionally, myotube activity can cause simultaneous activation of multiple electrodes, in a similar fashion to the activation of electrodes by networks of neurons. The existence of multiple electrode activation patterns indicates the presence of several large, independent myotubes. The ability to identify these patterns suggests that MEAs may provide an electrophysiological basis for examining the process by which myotube independence is maintained despite rapid myoblast fusion during differentiation. Finally, it is possible to use the underlying electrodes to selectively stimulate individual myotubes without stimulating others nearby. Potential uses of skeletal myotubes grown on MEA substrates include lab-on-a-chip applications, tissue engineering, co-cultures with motor neurons, and neural interfaces.
机译:微电极阵列(MEA)技术通过促进体外与细胞的非侵入性电相互作用,在生物检测,芯片实验室应用和组织工程领域具有巨大的潜力。迄今为止,将细胞成分与这种检测技术整合在一起的巨大努力仅与神经元或心肌细胞有关。我们调查使用MEAs来记录源自原代成肌细胞的骨骼肌管的可行性,以此作为引入第三种电源细胞类型并扩展基于MEA的生物传感器的潜在最终应用的方式。我们发现,自发收缩的肌管产生的细胞外动作电位(EAP)具有与神经元EAP相似的幅度。可以使用基于形状的尖峰分类过程,通过类似于分析神经尖峰序列的过程,通过生物信号源对肌管EAP进行分类。肌管EAP的低单位内部变异性表明成功的加标排序。另外,肌管活动可以引起多个电极的同时激活,这与神经元网络激活电极的方式相似。多个电极激活模式的存在表明存在多个大的独立的肌管。识别这些模式的能力表明,MEAs可以为检查分化过程中成肌细胞快速融合而维持肌管独立性的过程提供电生理基础。最后,有可能使用下面的电极选择性刺激单个肌管,而不会刺激附近的其他肌管。在MEA衬底上生长的骨骼肌管的潜在用途包括芯片实验室应用,组织工程,与运动神经元的共培养以及神经接口。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号