首页> 外文期刊>Journal of Nanoelectronics and Optoelectronics >Uncertainty Analysis of In- and Cross-Plane Thermal Conductivities of p-Bi0.5Sb1.5Te3 Thin Films by Changing Heater Widths in the Four-Point-Probe 3-Omega Method
【24h】

Uncertainty Analysis of In- and Cross-Plane Thermal Conductivities of p-Bi0.5Sb1.5Te3 Thin Films by Changing Heater Widths in the Four-Point-Probe 3-Omega Method

机译:P-Bi0.5SB1.5TE3薄膜在四点探针3-OMEGA方法中的加热器宽度的跨平面热导率的不确定性分析

获取原文
获取原文并翻译 | 示例
           

摘要

Reduction of thermal conductivity is one of the most effective strategies for increasing the figure of merit (ZT) of thin-film thermoelectric (TE) devices. Recently, thin-film structures using Bi-Sb-Te TE materials attracted significant attention because of their low thermal conductivity and anisotropic thermal properties. The four-point-probe three omega (3-omega) method is the most widely used technique to measure the thermal conductivity of various dimensional materials, including 1D nanostructures, 2D-thin films, and 3D-bulk materials, because it provides a simple measurement setup and high accuracy (less than similar to 10%) for the measurement. In addition, it was confirmed that both cross-plane and in-plane thermal conductivities of thin films can be measured by altering the width of the heater on the films and by using a proper substrate underneath the films in the 3-omega method. Here, we first report an uncertainty analysis of both the cross-plane and in-plane thermal conductivities of 500-nm-thick p-Bi0.5Sb1.5Te3 (p-BST) thin films, which were prepared on a SiO2/Si substrate and measured by the four-point-probe 3-omega method at room temperature, by varying the width of the heater on the substrates. From the uncertainty calculations, reasonable in-and cross-plane thermal conductivities of p-BST thin films in the 3-omega method were estimated with lower measurement error. The results suggest that the heater widths are strongly related to both in- and cross-plane thermal conductivities in the measurement. The corrected cross-plane and in-plane thermal conductivities of the 500-nm-thick thin films were similar to 0.43 +/- 0.02 W m(-1) K-1 and similar to 0.61 +/- 0.05 W m(-1) K-1, respectively, at room temperature.
机译:导热性的降低是增加薄膜热电(TE)器件的优选(Zt)的最有效策略之一。最近,使用Bi-Sb-Te Te材料的薄膜结构由于它们的导热性低和各向异性热性能而引起了显着的关注。四点探针三欧米茄(3-OMEGA)方法是最广泛使用的技术,用于测量各种尺寸材料的导热系数,包括1D纳米结构,2D薄膜和3D散装材料,因为它提供了简单的测量设置和高精度(小于相似的10%)进行测量。另外,证实可以通过改变膜上的加热器的宽度并通过在3-Omega方法中使用适当的基板来测量薄膜的平面和面内导热性。这里,我们首先报告在SiO 2 / Si衬底上制备的500nm厚的p-bi0.5sb1.5te3(p-bst)薄膜的平面和面内热导率的不确定性分析。通过在室温下改变基板上加热器的宽度,通过四点探针3-Omega方法测量。从不确定的计算,使用较低的测量误差估计3-Omega方法中P-BST薄膜的合理式内平面热导体。结果表明加热器宽度与测量中的跨平面热导流率强烈相关。校正的500-nm厚的薄膜的平面和面内热导体类似于0.43 +/- 0.02w m(-1)k-1,类似于0.61 +/- 0.05 w m(-1 )K-1分别在室温下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号