...
首页> 外文期刊>Journal of Materials Chemistry, C. materials for optical and electronic devices >Enhanced through-plane thermal conductivity in Polymer nanocomposites by constructing graphene-supported BN nanotubes
【24h】

Enhanced through-plane thermal conductivity in Polymer nanocomposites by constructing graphene-supported BN nanotubes

机译:通过构建石墨烯负载的BN纳米管,增强了聚合物纳米复合材料中的贯穿平面热导率

获取原文
获取原文并翻译 | 示例
           

摘要

Although graphene-related nanocomposites have great potential for dissipating excess heat to ensure that electronic devices have high efficiencies and long service lives, their practical applications are restricted by the ultra-low through-plane thermal conductivity of these composites, which is due to interfacial thermal resistance between the graphene layers. Herein, exfoliated graphene (E-G)-boron nitride nanotube (E-G-BNNT) hierarchical structures are developedviathein situgrowth of BNNTs on E-G. The BNNTs play an essential role in the construction of vertically aligned "bridges" for connecting E-G nanosheets during the hot-pressing process, while covalent C-N bonding at the E-G and BNNT interface creates a heat transfer pathway between graphene layers to reduce interfacial thermal resistance. The resultant E-G-BNNT composite has an architecture that is close to an ideal thermal conductive filler, and it is highly efficient at improving the through-plane thermal conductivity of PDVF-based nanocomposites, reaching 3.12 W m(-1)K(-1)at a loading of 15 wt%. Non-equilibrium molecular dynamics (NEMD) simulations further show that the development of covalent C-N bonding between E-G and BNNTs can effectively boost the interfacial thermal conductivity. Such excellent heat conduction performance allows the nanocomposite to show great potential for thermal management.
机译:虽然石墨烯相关的纳米复合材料具有耗散过热的巨大潜力,以确保电子器件具有高效率和长期使用寿命,但它们的实际应用受这些复合材料的超低贯穿平面导热率的限制,这是由于界面热量石墨烯层之间的电阻。在此,剥落的石墨烯(E-G)-BORON氮化物纳米管(E-G-BNNT)分层结构是E-g上的BNNTS的viaThein风采。 BNNTS在垂直对齐的“桥梁”的构造中起重要作用,用于在热压过程中连接E-G纳米片,而在E-G和BNNT界面处的共价C-N键合产生石墨烯层之间的传热途径,以降低界面热阻。所得的EG-BNNT复合材料具有靠近理想的导热填料的架构,并且在提高基于PDVF的纳米复合材料的贯穿面导热率时,高效,达到3.12Wm(-1)k(-1 )装载15wt%。非平衡分子动力学(NEMD)模拟进一步表明,E-G和BNNTS之间的共价C-N键合的发展可以有效地提高界面导热率。这种优异的导热性能允许纳米复合材料显示出热管理的巨大潜力。

著录项

  • 来源
  • 作者单位

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Univ Sci &

    Technol China Collaborat Innovat Ctr Chem Energy Mat Sch Chem &

    Mat Sci CAS Key Lab Soft Matter Chem Hefei 230026 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

    Anhui Univ Key Lab Environm Friendly Polymer Mat Anhui Prov Coll Chem &

    Chem Engn Hefei 230601 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号