首页> 外文期刊>Journal of Materials Engineering and Performance >Micro/Meso-Scale Equal Channel Angular Pressing of Al 1070 Alloy: Microstructure and Mechanical Properties
【24h】

Micro/Meso-Scale Equal Channel Angular Pressing of Al 1070 Alloy: Microstructure and Mechanical Properties

机译:MICR / MESO级等通道A1070合金的角度压制:微观结构和机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, Al 1070 alloy pins were processed via micro/meso-scale equal channel angular pressing (channel diameter 1.5 mm, the smallest channel diameter has ever been achieved in mesoscale), up to four passes at room temperature. The microstructure characteristics, i.e., grain size, and misorientation angle distributions were analyzed by high-resolution electron backscatter diffraction on the transverse plane for the ECAPed samples. Tensile properties for such small processed pins were measured by constructed micro/meso-scale tensile machine. The gauge length and the gauge diameter were 2 mm and 1.5 mm, respectively. After the fourth ECAP pass, the results revealed that the microstructure was refined remarkably from 15.5 mu m (the initial undeformed sample) to nearly 1.9 mu m due to the gradual transformation of the low-angle grain boundaries into high-angle grain boundaries as a result of the occurrence of grain subdivision. Micro/meso-scale ECAP does a significant enhancement in the ultimate tensile strength by 63%, whereas the ductility decreased after the fourth ECAP pass by 47.3% and this is supposed to be ascribed to the continuous decrease in subgrain size. The above results prove that the ECAP process has the potential for obtaining fine grains and improving material tensile properties even in micro/meso-scale.
机译:在本研究中,通过微/中间尺度等沟道角压(沟道直径1.5mm,在Messcale中实现最小的通道直径)加工Al 1070合金销,在室温下最多四次通过。通过高分辨率电子背散射衍射进行微观结构特征,即晶粒尺寸和错位角分布在横向平面上的横向平面,用于散布样品。通过构造的微/间尺度拉伸机测量这种小加工销的拉伸性能。规格长度和规格直径分别为2毫米,1.5毫米。在第四次ECAP通过之后,结果表明,由于低角度晶界变为高角度晶界,显着从15.5μm(初始的未变形样品)上的近1.9μm精细化成了微观结构。谷物细分发生的结果。微/间尺度的ECAP在最终拉伸强度下显着提高63%,而第四次ECAP通过47.3%后,延展性降低,这应该是归因于粒度的连续降低。上述结果证明了ECAP工艺的可能性,即使在微/间隙级中也能获得含细颗粒和改善材料拉伸性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号