...
首页> 外文期刊>Journal of tissue engineering and regenerative medicine >Mechanosensation across borders: fibroblasts inside a macroporous scaffold sense and respond to the mechanical environment beyond the scaffold walls
【24h】

Mechanosensation across borders: fibroblasts inside a macroporous scaffold sense and respond to the mechanical environment beyond the scaffold walls

机译:跨越边界的机械化:在大孔脚手架中的成纤维细胞感,并回应超越脚手架壁的机械环境

获取原文
获取原文并翻译 | 示例
           

摘要

In tissue defects, cells face distinct mechanical boundary conditions, but how this influences early stages of tissue regeneration remains largely unknown. Biomaterials are used to fill defects but also to provide specific mechanical or geometrical signals. However, they might at the same time shield mechanical information from surrounding tissues that is relevant for tissue functionalisation. This study investigated how fibroblasts in a soft macroporous biomaterial scaffold respond to distinct mechanical environments while they form microtissues. Different boundary stiffnesses counteracting scaffold contraction were provided via a newly developed in vitro setup. Online monitoring over 14 days revealed 3.0 times lower microtissue contraction but 1.6 times higher contraction force for high vs. low stiffness. This difference was significant already after 48 h, a very early stage of microtissue growth. The microtissue's mechanical and geometrical adaptation indicated a collective cellular behaviour and mechanical communication across scaffold pore walls. Surprisingly, the stiffness of the environment influenced cell behaviour even inside macroporous scaffolds where direct cell-cell contacts are hindered. Mechanical communication between cells via traction forces is essential for tissue adaptation to the environment and should not be blocked by rigid biomaterials. Copyright (c) 2017 John Wiley & Sons, Ltd.
机译:在组织缺陷中,细胞面临明显的机械边界条件,但这对组织再生的早期阶段的影响程度很大程度上是未知的。生物材料用于填充缺陷,而且用于提供特定的机械或几何信号。然而,它们可以同时屏蔽来自周围组织的机械信息,这些组织与组织官能化相关。本研究研究了软致巨孔生物材料支架中的成纤维细胞如何在形成微发布时对不同的机械环境进行响应。通过新开发的体外设置提供抵消支架收缩的不同边界刚度。在线监测超过14天显示显微镜收缩的3.0倍,但高与低刚度的收缩力较高1.6倍。在48小时后,这种差异是显着的,是微小诱导生长的早期阶段。 Microtiseue的机械和几何适配表示脚手架孔壁的集体蜂窝行为和机械通信。令人惊讶的是,即使在巨孔支架内,环境的刚度也影响了细胞行为,其中妨碍了直接细胞 - 细胞接触。通过牵引力的细胞之间的机械通信对于对环境的组织适应是必不可少的,并且不应被刚性生物材料堵塞。版权所有(c)2017 John Wiley&Sons,Ltd。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号