首页> 外文期刊>American Journal of Physiology >Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers.
【24h】

Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers.

机译:豚鼠肠神经纤维中间歇性线粒体运输的特征。

获取原文
获取原文并翻译 | 示例
           

摘要

Enteric neurons controlling various gut functions are prone to oxidative insults that might damage mitochondria (e.g., intestinal inflammation). To resume local energy supply, mitochondria need to be transported. We used MitoTracker dyes and confocal microscopy to investigate basic characteristics of mitochondrial transport in guinea pig myenteric neurites. During a 10-s observation of 1 mm nerve fiber, on average, three mitochondria were transported at an average speed of 0.41 +/- 0.02 microm/s. Movement patterns were clearly erratic, and velocities were independent of mitochondrial size. The velocity oscillated periodically ( approximately 6 s) but was not consistently affected by structures such as en route boutons, bifurcations, or stationary mitochondria. Also, mitochondria transported in opposite directions did not necessarily affect each others' mobility. Transport was blocked by microtubule disruption (100 microM colchicine), and destabilization (1 microM cytochalasin-D) or stabilization (10 microM phalloidin) of actin filaments, respectively, decreased (0.22 +/- 0.02 microm/s, P < 0.05) or increased (0.53 +/- 0.02 microm/s, P < 0.05) transport speed. Transport was inhibited by TTX (1 microM), and removal of extracellular Ca(2+) (plus 2 mM EGTA) had no effect. However, depletion of intracellular stores (thapsigargin) reduced (to 33%) and slowed the transport significantly (0.18 +/- 0.02 microm/s, P < 0.05), suggesting an important role for stored Ca(2+) in mitochondrial transport. Transport was also reduced (to 21%) by the mitochondrial uncoupler FCCP (1 microM) in a time-dependent fashion and slowed by oligomycin (10 microM). We conclude that mitochondrial transport is remarkably independent of structural nerve fiber properties. We also show that mitochondrial transport is TTX sensitive and speeds up by stabilizing actin and that functional Ca(2+) stores are required for efficient transport.
机译:控制各种肠道功能的肠道神经元容易受到氧化损伤,可能损害线粒体(例如肠道炎症)。为了恢复本地能源供应,需要运输线粒体。我们使用MitoTracker染料和共聚焦显微镜研究了豚鼠肌神经突中线粒体转运的基本特征。在10 s观察1毫米神经纤维期间,平均而言,三个线粒体以0.41 +/- 0.02 microm / s的平均速度传输。运动模式明显不稳定,并且速度与线粒体大小无关。速度周期性地振荡(大约6 s),但并不受诸如途中的钮扣,分叉或固定线粒体之类的结构的影响。同样,沿相反方向运输的线粒体不一定会影响彼此的活动能力。微管破坏(100 microM秋水仙碱)和肌动蛋白丝的失稳(1 microM cytochalasin-D)或稳定化(10 microM鬼笔环肽)分别阻止了运输的减少(0.22 +/- 0.02 microm / s,P <0.05)或增加(0.53 +/- 0.02 microm / s,P <0.05)的运输速度。运输被TTX(1 microM)抑制,去除细胞外Ca(2 +)(加上2 mM EGTA)没有任何作用。但是,细胞内存储(thapsigargin)的消耗减少(到33%)并显着减慢了传输速度(0.18 +/- 0.02 microm / s,P <0.05),表明存储的Ca(2+)在线粒体运输中具有重要作用。线粒体解偶联剂FCCP(1 microM)也以时间依赖性方式减少了运输(至21%),而寡霉素(10 microM)降低了运输速度。我们得出的结论是,线粒体运输显着独立于结构神经纤维特性。我们还表明,线粒体运输是TTX敏感的,并且通过稳定肌动蛋白而加快,功能性Ca(2+)存储对于有效运输是必需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号