...
首页> 外文期刊>Biochemistry >A Biophysical Perspective on Enzyme Catalysis
【24h】

A Biophysical Perspective on Enzyme Catalysis

机译:酶催化的生物物理视角

获取原文
获取原文并翻译 | 示例
           

摘要

Even after a century of investigation, our understanding of how enzymes work remains far from complete. In particular, several factors that enable enzymes to achieve high catalytic efficiencies remain only poorly understood. A number of theories have been developed, which propose or reaffirm that enzymes work as structural scaffolds, serving to bring together and properly orient the participants so that the reaction can proceed; therefore, leading to enzymes being viewed as only passive participants in the catalyzed reaction. A growing body of evidence shows that enzymes are not rigid structures but are constantly undergoing a wide range of internal motions and conformational fluctuations. In this Perspective, on the basis of studies from our group, we discuss the emerging biophysical model of enzyme catalysis that provides a detailed understanding of the interconnection among internal protein motions, conformational substates, enzyme mechanisms, and the catalytic efficiency of enzymes. For a number of enzymes, networks of conserved residues that extend from the surface of the enzyme all the way to the active site have been discovered. These networks are hypothesized to serve as pathways of energy transfer that enables thermodynamical coupling of the surrounding solvent with enzyme catalysis and play a role in promoting enzyme function. Additionally, the role of enzyme structure and electrostatic effects has been well acknowledged for quite some time. Collectively, the recent knowledge gained about enzyme mechanisms suggests that the conventional paradigm of enzyme structure encoding function is incomplete and needs to be extended to structure encodes dynamics, and together these enzyme features encode function including catalytic rate acceleration.
机译:即使经过一个世纪的调查,我们对酶工作的理解仍然远非完整。特别是,使酶实现高催化效率的几个因素仍然是较差的理解。已经开发了许多理论,这提出或重申酶作为结构支架,用于组合并妥善定向参与者,以便反应可以进行;因此,导致酶被视为催化反应中的被动参与者。越来越多的证据表明,酶不是刚性结构,但不断经历各种内部运动和构象波动。在这种观点中,根据我们组的研究的基础,我们讨论了酶催化的新出现的生物物理模型,详细了解内部蛋白质运动,构象出区,酶机制和酶的催化效率。对于许多酶,已经发现了从酶表面延伸到活性位点的保守残留的网络。这些网络被假设用作能量转移的途径,其能够使周围溶剂与酶催化的热力学偶联并发挥促进酶功能的作用。此外,酶结构和静电效应的作用得到了很好的确认。集体,近期获得酶机制的知识表明,酶结构编码功能的常规范式不完整,并且需要扩展到结构编码动态,并且这些酶特征在包括催化速率加速器的编码功能。

著录项

  • 来源
    《Biochemistry》 |2019年第6期|共12页
  • 作者

    Agarwal Pratul K.;

  • 作者单位

    Univ Tennessee Dept Biochem &

    Cellular &

    Mol Biol Knoxville TN 37996 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号