...
首页> 外文期刊>CERAMICS INTERNATIONAL >Microstructure evolution and mechanical properties of in-situ bimodal TiC-Fe coatings prepared by reactive plasma spraying
【24h】

Microstructure evolution and mechanical properties of in-situ bimodal TiC-Fe coatings prepared by reactive plasma spraying

机译:反应等离子体喷涂制备的原位双峰TiC-Fe涂层的微观结构演化与机械性能

获取原文
获取原文并翻译 | 示例
           

摘要

An in-situ synthesis phenomenon of bimodal TiC-Fe coatings is discovered in the reactive thermal spraying of Fe-Ti-C composite powders. The Fe-Ti-C composite powders were prepared by a hybrid spray-drying/pyrolysis technology using a mixture of ferrotitanium (TiFe), graphite and sucrose. The microstructure evolution and mechanical properties of the coatings were investigated. The results showed that the TiC-Fe coatings exhibited an apparent bimodal particle size distribution of submicron and nano TiC particles in the alpha-Fe matrix. The formation of the bimodal distribution structure was revealed as following bi-precipitation mechanism: the first precipitation during the flight process to form submicron TiC particles and the second precipitation in the impact process with rapid cooling to form nano TiC particles. The bimodal TiC-Fe coatings showed high microhardness in various loads due to simultaneous hardening effect from submicron and nano TiC particles. The crack analysis showed that the in-situ bimodal TiC structure hindered the crack initiation and the crack propagation and thus improved the fracture toughness. The bimodal TiC-Fe coatings exhibited high abrasive wear resistance and the wear mechanism transformed from two-body abrasive wear to three-body abrasive wear with the increase of spray distances.
机译:在Fe-Ti-C复合粉末的反应热喷涂中发现了双峰TiC-Fe涂层的原位合成现象。使用铁托鎓(TIFE),石墨和蔗糖的混合物,通过混合喷雾干燥/热解型技术制备Fe-Ti-C复合粉末。研究了涂层的微观结构演化和机械性能。结果表明,TiC-Fe涂层在α-Fe基质中表现出亚微米和纳米TiC颗粒的表观双峰粒度分布。揭示了双峰分布结构的形成,如下双沉淀机制:飞行过程中的第一次沉淀,形成亚微米颗粒和冲击过程中的第二沉淀,快速冷却形成纳米TIC颗粒。由于来自亚微米和纳米TiC颗粒的同时硬化效果,双峰TiC-Fe涂层显示出各种载荷的高硬度。裂纹分析表明,原位双峰结构阻碍了裂纹启动和裂纹繁殖,从而提高了断裂韧性。双峰TiC-Fe涂料表现出高磨料耐磨性,并且随着喷射距离的增加,从双体磨料磨损转变为三体磨料的磨损机构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号