...
首页> 外文期刊>Current Biology: CB >Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits
【24h】

Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct Sensorimotor Circuits

机译:与谱系相关的神经元的时间队列在不同的感觉电路电路中执行类似的功能

获取原文
获取原文并翻译 | 示例
           

摘要

Neuronal stem cell lineages are the fundamental developmental units of the brain, and neuronal circuits are the fundamental functional units of the brain. Determining lineage-circuitry relationships is essential for deciphering the developmental logic of circuit assembly. While the spatial distribution of lineage-related neurons has been investigated in a few brain regions [1-9], an important, but unaddressed question is whether temporal information that diversifies neuronal progeny within a single lineage also impacts circuit assembly. Circuits in the sensorimotor system (e.g., spinal cord) are thought to be assembled sequentially [10-14], making this an ideal brain region for investigating the circuit-level impact of temporal patterning within a lineage. Here, we use intersectional genetics, optogenetics, high-throughput behavioral analysis, single-neuron labeling, connectomics, and calcium imaging to determine how a set of bona fide lineage-related interneurons contribute to sensorimotor circuitry in the Drosophila larva. We show that Even-skipped lateral interneurons (ELs) are sensory processing interneurons. Late-born ELs contribute to a proprioceptive body posture circuit, whereas early-born ELs contribute to a mechanosensitive escape circuit. These data support a model in which a single neuronal stem cell can produce a large number of interneurons with similar functional capacity that are distributed into different circuits based on birth timing. In summary, these data establish a link between temporal specification of neuronal identity and circuit assembly at the single-cell level.
机译:神经元干细胞谱系是大脑的基本发育单位,而神经元电路是大脑的基本功能单位。确定谱系电路关系对于解密电路组件的发展逻辑是必不可少的。虽然在少数大脑区域进行了研究的谱系相关神经元的空间分布,但一个重要但未被解除的问题是在单个谱系内不同的时间信息是否会影响电路组件。认为,依次进行传感器系统(例如,脊髓)中的电路[10-14],使得该理想的大脑区域用于研究跨越跨越跨越时间图案的电路电平影响。在这里,我们使用交叉遗传学,光学,高通量行为分析,单神经元标记,克励脉和钙成像,以确定一组真正的与迪斯科罗拉幼虫中的与传感器电路有关的一套真正的血管电路。我们展示了甚至跳过的外侧型互相(ELS)是感官加工中间核心。迟到的ELS有助于一个壁虎搜索体姿势电路,而早期的ELS有助于机械敏感逃逸电路。这些数据支持一种模型,其中单个神经元干细胞可以产生大量具有与基于出生时机的不同电路的功能容量的大量内核。总之,这些数据建立了在单个单元级的神经元标识和电路组件的时间规范之间的链路。

著录项

  • 来源
    《Current Biology: CB》 |2017年第10期|共12页
  • 作者单位

    Univ Chicago Dept Mol Genet &

    Cell Biol 920 East 58th St Chicago IL 60637 USA;

    Univ Chicago Program Cell &

    Mol Biol 920 East 58th St Chicago IL 60637 USA;

    Univ Chicago Comm Dev Regenerat &

    Stem Cell Biol 920 East 58th St Chicago IL 60637 USA;

    Univ Chicago Comm Genet Genom &

    Syst Biol 920 East 58th St Chicago IL 60637 USA;

    Univ Chicago Dept Mol Genet &

    Cell Biol 920 East 58th St Chicago IL 60637 USA;

    Univ Chicago Dept Mol Genet &

    Cell Biol 920 East 58th St Chicago IL 60637 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号