...
首页> 外文期刊>ACS applied materials & interfaces >Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation
【24h】

Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation

机译:通过直接光氢化硅烷化化学官能化控制的介电击穿氮化硅纳米孔

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nanopores are a prominent enabling tool for single-molecule applications such as DNA sequencing, protein profiling, and glycomics, and the construction of ionic circuit elements. Silicon nitride (SiNx) is a leading scaffold for these <100 nm-diameter nanofluidic ion-conducting channels, but frequently challenging surface chemistry remains an obstacle to their use. We functionalized more than 100 SiNx nanopores with different surface terminations-acidic (Si-R-OH, Si-R-CO2H), basic (Si-R-NH2), and nonionizable (Si-R-C6H3(CF3)(2))-to chemically tune the nanopore size, surface charge polarity, and subsequent chemical reactivity and to change their conductance by changes of solution pH. The initial one-reaction-step covalent chemical film formation was by hydrosilylation and could be followed by straightforward condensation and click reactions. The hydrosilylation reaction step used neat reagents with no special precautions such as guarding against water content. A key feature of the approach was to combine controlled dielectric breakdown (CDB) with hydrosilylation to create and functionalize SiNx nanopores. CDB thus replaced the detrimental but conventionally necessary surface pretreatment with hydrofluoric acid. Proof-of-principle detection of the canonical test molecule, lambda-DNA, yielded signals that showed that the functionalized pores were not obstructed by chemical treatments but could translocate the biopolymer. The characteristics were tuned by the surface coating character. This robust and flexible surface coating method, freed by CDB from HF etching, portends the development of nanopores with surface chemistry tuned to match the application, extending even to the creation of biomimetic nanopores.
机译:纳米孔是用于单分子应用的突出促进工具,例如DNA测序,蛋白质分析和族,以及离子电路元件的构造。氮化硅(SINX)是用于这些<100nm直径的纳米流体离子导电通道的前导支架,但经常具有挑战性的表面化学仍然是它们使用的障碍。我们用不同的表面终端 - 酸性(Si-R-OH,Si-R-CO 2H),碱(Si-R-NH2)和非可解(Si-R-C6H3(CF3)(2)的官能化) - 化学调谐纳米孔尺寸,表面电荷极性和随后的化学反应性,并通过溶液pH的变化改变它们的电导。初始的一次反应步骤共价化学膜形成是通过氢化硅烷化,然后是直接的冷凝,然后咔哒反应。氢化硅烷化反应步骤使用整洁的试剂,没有特殊的预防措施,例如防范水含量。该方法的一个关键特征是将受控介电击穿(CDB)与氢化硅烷化相结合以产生和官能化SINX纳米孔。因此,CDB取代了与氢氟酸的有害但常规必要的表面预处理。原则上的原理检测规范试验分子Lambda-DNA,产生的信号,显示出官能化孔未被化学处理阻塞,但可以易于生物聚合物。表面涂层特征调节特性。这种稳健且柔性的表面涂布方法,通过CDB释放来自HF蚀刻,将纳米孔的开发与表面化学进行调整以匹配应用,甚至延伸到仿生纳米孔的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号