...
首页> 外文期刊>ACS applied materials & interfaces >A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution
【24h】

A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution

机译:用于锂离子电池的新型三元化合物:从复合物到固溶体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li2MnO3 delivers high capacity over 200 mAh g(-1) but suffers from poor structural stability and electronic conductivity. Replacing Mn4+ ions by relatively larger Sn4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li2MnO3 material. However, large difference in ionic radii of Mn4+ and Sn4+ ions leads to phase separation of Li2MnO3 and Li2SnO3 during high-temperature synthesis. To prepare solid-solution phase of Li2MnO3-Li2SnO3, a buffer agent of Ru4+, whose ionic radius is in between that of Mn4+ and Sn4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li2RuO3-Li2MnO3-Li2SnO3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li+/e(-) transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li2RuO3-Li2MnO3-Li2SnO3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn4+ ions with larger sizes could partially block the migration of Mn4+ and Ru4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.
机译:寻找高性能阴极材料是开发高能量密度为电动车辆(EVS)的高能量密度的重要任务。作为一种有前途的富含锂的材料,Li2MNO3提供高容量超过200mAhg(-1),但具有差的结构稳定性和电子电导率。通过相对较大较大的SN4 +离子替代MN4 +离子被认为是提高结构稳定性的可能策略,从而改善Li2MNO3材料的循环性能。然而,Mn4 +和Sn4 +离子的离子半径差异导致在高温合成期间Li 2 MnO 3和Li2SnO 3的相分离。为了制备Li 2 MnO 3-Li2SNO3的固溶体,将引入ru4 +的缓冲剂,其离子半径在Mn4 +和Sn 4 +离子之间,以帮助形成单一的固溶液相。结果表明,Li2RuO3-Li2MNO3-Li2SNO3三元体系从混合复合阶段演化到单一的固溶相中,随着RU含量的增加。同时,该三元体系的放电能力在转化点显着增加,该转化点归因于改善Li + / E( - )运输动力学和阴离子氧化还原化学的固溶液相。还研究了Li2RuO3-Li2MNO3-Li2SnO3三元体系的Mn / Sn摩尔比的作用。据透露,较高的Sn内容有利于系统的循环稳定性,因为具有较大尺寸的SN4 +离子可以部分地阻止Mn4 +和Ru4 +从过渡金属层到Li层的迁移,从而抑制了系统的结构变换从层状到尖晶石相中。这些发现可以使新的路线能够为LIBS探索三元或甚至少数锂的阴极材料。

著录项

  • 来源
  • 作者单位

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Sichuan Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Sichuan Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Sichuan Peoples R China;

    Nanjing Tech Univ Jiangsu Natl Synerget Innovat Ctr Adv Mat Sch Chem &

    Mol Engn Inst Adv Synth Nanjing 211816 Jiangsu Peoples R China;

    Nanjing Tech Univ Jiangsu Natl Synerget Innovat Ctr Adv Mat Sch Chem &

    Mol Engn Inst Adv Synth Nanjing 211816 Jiangsu Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Sichuan Peoples R China;

    China Acad Engn Phys Inst Elect Engn Mianyang 621000 Sichuan Peoples R China;

    Nanjing Tech Univ Jiangsu Natl Synerget Innovat Ctr Adv Mat Sch Chem &

    Mol Engn Inst Adv Synth Nanjing 211816 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Li2RuO3-Li2MnO3-Li2SnO3; ternary system; composite; solid solution; lithium-ion battery;

    机译:Li2Ruo3-Li2MNO3-LI2SNO3;三元系;复合材料;固溶;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号