...
首页> 外文期刊>ACS applied materials & interfaces >Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation
【24h】

Nanoscale Chemical Characterization of Solid-State Microbattery Stacks by Means of Auger Spectroscopy and Ion-Milling Cross Section Preparation

机译:通过螺旋钻光谱和离子铣削横截面制备纳米级化学表征固态微滴岩堆叠

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The current sustained demand for "smart" and connected devices has created a need for more miniaturized power sources, hence for microbatteries. Lithium-ion or "lithium-free" all solid-state thin-film batteries are adapted solutions to this issue. The capability to carry out spatially resolved chemical analysis is fundamental for the understanding of the operation in an all-solidstate microbattery. Classically cumbersome and not straightforward techniques as TEM/STEM/EELS and FIB preparation methods could be used to address this issue. The challenge in this work is to make the characterization of Li-based material possible by coupling ion-milling cross section preparation method and AES techniques to characterize the behavior of a LiCoO2 positive electrode in an all solid state microbattery. The surface chemistry of LiCoO2 has been studied before and after UPON deposition. Modifications of the chemical environments characteristic of the positive electrode have been reported at different steps of the electrochemical process. An original qualitative and a semiquantitative analysis has been used in this work with the peak deconvolution method based on real, certified reference spectra to better understand the lithiation/delithiation process. This original coupling has demonstrated that a full study of the pristine, cycled, and post mortem positive electrode in a microbattery is also possible. The ion-milling preparation method allows access to a large area, and the resolution of Auger analysis is highly resolved in energy to separate the lithium and the cobalt signals in an accurate way.
机译:目前对“智能”和连接设备的持续需求创造了需要更小型化的电源,从而进行微滴漏。锂离子或“无锂”所有固态薄膜电池都适用于此问题的解决方案。在空间解决的化学分析中进行空间分辨的化学分析是对全稳态微滴定量的操作的理解。经典繁琐的且不直接的技术,作为TEM /茎/鳗鱼和FIB制备方法可用于解决这个问题。本作作品中的挑战是通过耦合离子铣削横截面制备方法和AES技术来表征锂基材料,以表征所有固态微滴漏中LiCoO2正极的行为。在沉积之前和之后研究了LiCoO2的表面化学。在电化学过程的不同步骤中报道了正电极特征的化学环境的修改。在这项工作中使用了基于真实的认证参考光谱的峰值解卷积方法,以更好地理解锂化/脱位过程,原始定性和半定性分析。该原始耦合已经证明,在微牵膜上的原始,循环和验尸正电极也可以完整地研究。离子铣削制备方法允许进入大面积,螺旋钻分析的分辨率高度分辨能量以精确的方式分离锂和钴信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号