首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production
【24h】

Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production

机译:ZnS / G-C3N4中介导的电子空穴分离ZnS / G-C3N4的异质结,用于高效可见光光催化氢气产生

获取原文
获取原文并翻译 | 示例
           

摘要

Vacancy defects play an important role in modifying the electronic structure and the properties of photoexcited charge carriers by introducing additional energy levels and consequently enhanced the photocatalytic activity of photocatalyst. In this work, we report a ZnS/g-C3N4 heterostructure with abundant zinc vacancy defects on the surface of ZnS to emphasis the synergistic promotion on charge separation. The ZnS/g-C3N4 heterostructured photocatalyst possesses low over-potential, extended absorption in the visible light region, and promoted photoinduced electron-hole separation capability. Fluorescence emission spectra and XPS results confirm that existence of abundant zinc vacancies on ZnS. V-zn-rich CZV20 (g-C3N4/ZnS-20 wt%) heterojunction exhibits more than 30 times higher photocatalytic H-2 evolution rate (713.68 mu mol h(-1) g(-1)) than that of pure g-C3N4 (24.09 mu mol h(-1) g(-1)) under visible light irradiation and high stability during the prolonged photocatalytic operation. The enhanced photocatalytic performance can be attributed to the intimate interfacial contact between g-C3N4 and ZnS nanoparticles, increasing the light-absorbing capacity and charge separation efficiency of znS/g-C3N4 heterojunction. And more importantly, the visible-light photocatalytic H-2 production activity can be ascribed to the two-photo excitation in the middle band gap of ZnS. This work demonstrates that appropriate Zn vacancy defects modified ZnS/g-C3N4 heterojunction can be used for highly efficient visible-light photocatalysis.
机译:空缺缺陷通过引入额外的能量水平并因此增强了光催化剂的光催化活性来发挥对电子结构和光束电荷载体的性质起作用的重要作用。在这项工作中,我们报告了ZnS表面上具有丰富的锌空位缺陷的ZnS / G-C3N4异质结构,以强调电荷分离的协同促进。 ZnS / G-C3N4异质结构光催化剂具有低电位,在可见光区域中具有低潜力,延伸吸收,并促进了光引导的电子 - 空穴分离能力。荧光发射光谱和XPS结果证实了ZNS上的丰富锌缺点存在。 V-Zn-富含CZV20(G-C3N4 / ZnS-20wt%)异质结呈现出超过30倍的光催化H-2进化速率(713.68μmolH(-1)G(-1))比纯g在延长的光催化作用期间,在可见光照射和高稳定性下,-C3N4(24.09μmMolH(-1)G(-1))。增强的光催化性能可以归因于G-C3N4和ZnS纳米颗粒之间的紧密互补接触,增加了ZnS / G-C3N4异质结的光吸收能力和电荷分离效率。更重要的是,可见光的光催化H-2生产活性可以归因于ZnS的中间带隙中的两极励磁。这项工作表明,适当的Zn空位缺陷改性ZnS / G-C3N4异质结可用于高效的可见光光催化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号