...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Assessing geothermal/solar hybridization - Integrating a solar thermal topping cycle into a geothermal bottoming cycle with energy storage
【24h】

Assessing geothermal/solar hybridization - Integrating a solar thermal topping cycle into a geothermal bottoming cycle with energy storage

机译:评估地热/太阳杂交 - 将太阳能热顶循环集成到具有能量存储的地热底循环中

获取原文
获取原文并翻译 | 示例
           

摘要

Geothermal and concentrating solar power (CSP) technologies typically use heat at different temperatures in their commercial deployments. This enables a technically viable hybridization of a solar topping cycle and a geothermal bottoming cycle at locations where both resources are available. In this article, an underperforming geothermal power system based at Burley, Idaho is used as a baseline to investigate the technical and economic potential of such a hybrid cycle. A direct thermal energy storage (TES) system is also integrated to overcome the intermittency of the solar resource. Design and off-design behavior of key components are modelled to simulate the annual performance of the hybrid system on an hourly basis. The sizing of the solar field and thermal storage is investigated and is seen to significantly impact the annual electricity generation and efficiency. Various cost scenarios for the solar field and thermal energy storage are investigated. An economic metric - levelized cost of electricity (LCOE) - is used to optimize the solar field sizing and TES capacity. The hybrid plant converts the additional solar heat input into additional work with an efficiency of 32.9%. Retrofitting a geothermal plant with solar and eight hours of energy storage can achieve an LCOE of 0.136 $/kWh(e) in current cost scenarios and 0.081 $/kWh(e) in a future cost reduction scenario. Although the hybrid system cannot directly compete with current PV systems without batteries, it has an LCOE 32% lower than that of a PV-battery system. This paper provides insights into the research and development of the future grid with a high renewable energy penetration and encourages further study of energy hybridization for improved efficiencies and economics.
机译:地热和集中的太阳能(CSP)技术通常在其商业部署中使用不同温度的热量。这使得可以在技术上可行的太阳能顶部循环的杂交和两个资源可用的位置处的地热底循环。在本文中,爱达荷州基于Burley的基于Burley的绝佳的地热电系统用作研究这种混合循环的技术和经济潜力的基线。还集成了直接热能存储(TES)系统以克服太阳能资源的间歇性。关键组件的设计和非设计行为被建模,以便每小时模拟混合系统的年度性能。研究了太阳能场和热储存的尺寸,并被视为显着影响年发电和效率。研究了太阳能场和热能储存的各种成本场景。经济公制调整电力成本(LCoE) - 用于优化太阳能场尺寸和特质容量。杂交工厂将额外的太阳能热量转换为额外的工作,效率为32.9%。用太阳能和八个小时的储存地热厂改造了0.136 $ / kWh(e)的LCoE,以当前的成本场景和0.081 $ / kWh(e)在未来的成本降低方案中。虽然混合动力系统不能直接与电流的光伏系统竞争,但它的LCOE比PV电池系统低32%。本文为未来电网的研究和开发提供了高可再生能源渗透的见解,并鼓励进一步研究能源杂交,以提高效率和经济学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号