...
首页> 外文期刊>Biomaterials Science >Molecular origin of viscoelasticity in mineralized collagen fibrils
【24h】

Molecular origin of viscoelasticity in mineralized collagen fibrils

机译:矿化胶原纤维中粘弹性的分子来源

获取原文
获取原文并翻译 | 示例
           

摘要

Bone is mineralized tissue constituting the skeletal system, supporting and protecting the body's organs and tissues. In addition to such fundamental mechanical functions, bone also plays a remarkable role in sound conduction. From a mechanical standpoint, bone is a composite material consisting of minerals and collagen arranged in multiple hierarchical structures, with a complex anisotropic viscoelastic response, capable of transmitting and dissipating energy. At the molecular level, mineralized collagen fibrils are the basic building blocks of bone tissue, and hence, understanding bone properties down to fundamental tissue structures enables better identification of the mechanisms of structural failures and damage. While efforts have focused on the study of micro- and macro-scale viscoelasticity related to bone damage and healing based on creep, mineralized collagen has not been explored at the molecular level. We report a study that aims at systematically exploring the viscoelasticity of collagenous fibrils with different mineralization levels. We investigate the dynamic mechanical response upon cyclic and impulsive loads to observe the viscoelastic phenomena from either shear or extensional strains via molecular dynamics. We perform a sensitivity analysis with several key benchmarks: intrafibrillar mineralization percentage, hydration state, and external load amplitude. Our results show an increase of the dynamic moduli with an increase of the mineral percentage, pronounced at low strains. When intrafibrillar water is present, the material softens the elastic component, but considerably increases its viscosity, especially at high frequencies. This behavior is confirmed from the material response upon impulsive loads, in which water drastically reduces the relaxation times throughout the input velocity range by one order of magnitude, with respect to the dehydrated counterparts. We find that, upon transient loads, water has a major impact on the mechanics of mineralized fibrillar collagen, being able to improve the capability of the tissue to passively and effectively dissipate energy, especially after fast and high-amplitude external loads. Our study provides knowledge of bone mechanics in relation to pathologies deriving from dehydration or traumas. Moreover, these findings show the potential for being used in designing new bioinspired materials not limited to tissue engineering applications, in which passive mechanisms for dissipating energy can prevent structural failures.
机译:骨是矿化组织,构成骨骼系统,支持和保护身体的器官和组织。除了如此基本的机械功能外,骨头也在声音传导中发挥着显着作用。从机械的角度来看,骨是一种复合材料,其由矿物质和胶原组成,该矿物质和胶原蛋白布置在多个层次结构中,具有复杂的各向异性粘弹性响应,能够传播和消散能量。在分子水平,矿化胶原型原纤维是骨组织的基本构建块,因此,了解骨骼性质下降到基本组织结构,使得能够更好地识别结构失败和损坏的机制。虽然努力侧重于基于蠕变的骨损伤和愈合相关的微观和宏观粘度的研究,但在分子水平上尚未探讨矿化胶原蛋白。我们报告了一项旨在系统地探索具有不同矿化水平的胶原纤维的粘弹性。我们研究了循环和脉冲载荷时动态机械响应,观察通过分子动力学从剪切或延伸菌株的粘弹性现象。我们使用几个关键基准进行敏感性分析:IntrafiRrillar矿化百分比,水合状态和外部负载幅度。我们的结果表明,随着矿物质百分比的增加,动态模量的增加,在低菌株处发音。当存在胃中产水中时,材料软化弹性部件,但显着增加其粘度,尤其是高频率。这种行为是从脉冲负载时的材料响应确认的,其中水在整个输入速度范围内通过一个大小的输入速度的弛豫时间减小了一种级别,相对于脱水的对应物。我们发现,在瞬态载荷时,水对矿化纤维结胶原的力学产生了重大影响,能够改善组织以被动和有效地散发能量的能力,特别是在快速和高幅度的外部负载之后。我们的研究提供了与脱水或创伤的病理相关的骨力学知识。此外,这些发现表明,用于设计新的生物悬浮材料不限于组织工程应用的可能性,其中用于耗散能量的被动机制可以防止结构故障。

著录项

  • 来源
    《Biomaterials Science》 |2021年第9期|共11页
  • 作者单位

    Laboratory for Atomistic and Molecular Mechanics (LAMM) USA;

    Dipartimento di Chimica Materiali e Ingegneria Chimica "G. Natta" Politecnico di Milano Milano Italy;

    Laboratory for Atomistic and Molecular Mechanics (LAMM) USA;

    Laboratory for Atomistic and Molecular Mechanics (LAMM) USA;

    Laboratory for Atomistic and Molecular Mechanics (LAMM) USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号