...
首页> 外文期刊>Biomaterials Science >Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces
【24h】

Tailoring nitric oxide release with additive manufacturing to create antimicrobial surfaces

机译:用添加剂制造剪裁一氧化氮释放以产生抗微生物表面

获取原文
获取原文并翻译 | 示例
           

摘要

The current use of implantable and indwelling medical is limited due to potential microbial colonization leading to severe ailments. The aim of this work is to develop bioactive polymers that can be customized based on patient needs and help prevent bacterial infection. Potential benefits of additive manufacturing technology are integrated with the antimicrobial properties of nitric oxide (NO) to develop NO-releasing biocompatible polymer interfaces for addressing bacterial infections. Using filament-based additive manufacturing and polycarbonateurethane-silicone (PCU-Sil) a range of films possessing unique porosities (Disk-60, Disk-40, solid, capped) were fabricated. The films were impregnated with S-nitroso-N-acetylpenicillamine (SNAP) using a solvent-swelling process. The Disk-60 porous films had the greatest amount of SNAP (19.59 wt%) as measured by UV-vis spectroscopy. Scanning electron microscopy and energy-dispersive X-ray spectroscopy confirmed an even distribution of SNAP throughout the polymer. The films exhibited structure-based tunable NO-release at physiological levels ranging from 7-14 days for solid and porous films, as measured by chemiluminescence. The antibacterial efficacy of the films was studied against Staphylococcus aureus using 24 h in vitro bacterial adhesion assay. The results demonstrated a >99% reduction of viable bacteria on the surface of all the NO-releasing films compared to unmodified PCU-Sil controls. The combination of 3D-printing technology with NO-releasing properties represents a promising technique to develop customized medical devices (such as 3D-scaffolds, catheters, etc.) with distinct NO-release levels that can provide antimicrobial properties and enhanced biocompatibility.
机译:由于潜在的微生物殖民化导致严重疾病,目前使用植入和留置医疗的使用受到限制。这项工作的目的是开发能够根据患者需求定制的生物活性聚合物,并有助于预防细菌感染。添加剂制造技术的潜在益处与一氧化氮(NO)的抗微生物性质相结合,以开发无释放的生物相容性聚合物界面,用于解决细菌感染。使用丝丝添加剂制造和聚碳酸酯氨基硅烷 - 硅氧烷(PCU-SIL)制造一系列具有独特孔隙率(盘-60,盘-40,固体,盖)的一系列膜。使用溶剂溶胀方法浸渍膜用S-NITROSO-N-乙酰戊酰胺(SNAP)浸渍。盘-60多孔膜具有通过UV-Vis光谱法测量的最大量的卡扣(19.59wt%)。扫描电子显微镜和能量分散X射线光谱证实了在整个聚合物中施用的均匀分布。通过化学发光测量,该薄膜在7-14天的生理水平下表现出基于结构的可调谐无释放,从而通过化学发光测量。使用24小时在体外粘结测定法测定葡萄球菌对膜的抗菌效果。结果表明,与未修饰的PCU-SIL控制相比,所有无释放薄膜的表面上的活细菌的减少> 99%。具有无释放特性的3D打印技术的组合代表了具有不同无释放水平的定制医疗设备(如3D支架,导管等)的有希望的技术,可以提供抗微生物性质和增强的生物相容性。

著录项

  • 来源
    《Biomaterials Science》 |2021年第8期|共12页
  • 作者单位

    School of Chemical Materials &

    Biomedical Engineering University of Georgia Athens GA USA;

    Mechanical Engineering and Materials Science Duke University Durham NC USA;

    College of Health Professions and Sciences University of Central Florida Orlando FL USA;

    Mechanical Engineering and Materials Science Duke University Durham NC USA;

    School of Chemical Materials &

    Biomedical Engineering University of Georgia Athens GA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号