首页> 外文期刊>Biomaterials Science >Smart nanomicelles with bacterial infection-responsive disassembly for selective antimicrobial applications
【24h】

Smart nanomicelles with bacterial infection-responsive disassembly for selective antimicrobial applications

机译:智能纳米乳蛋白,具有细菌感染响应性的选择性抗微生物应用

获取原文
获取原文并翻译 | 示例
           

摘要

New generation antimicrobial agents are expected to exhibit non-metabolic killing mechanisms, high killing potency and biocompatibility. We synthesized a cationic chitosan derivative and an anionic chitosan derivative - specifically an α-poly(L)lysine side-grafted chitosan (CS-PLL) and an anionic citraconyl anhydride (CA) modified polylysine side graft for chitosan (CS-PLL-CA). The β-carboxylic amide of CS-PLL-CA is pH-labile and self-cleavable under pH 6 or below. When we mixed the cationic (CS-PLL) and anionic (CS-PLL-CA) peptidosaccharide copolymers, they self-assembled, due to electrostatic charge interactions, into nanomicelles (NMs) with the oppositely charged peptides in the core and the chitosan polysaccharide arms on the shell. The NMs exhibited high hemo- and cytocompatibility (nontoxic) at physiological pH of 7.4, due to the chitosan protection on the shell and charge neutralization on the core. Upon reaching the bacterial infection site, the chitosan shell interacted and accumulated around the bacteria. The bacterial infection sites in the body usually show localized acidity as a result of the combined actions of bacterial metabolism and host immune response, and the pH can decrease to as low as 5.5. At this low pH, the β-carboxylic amide bond of the anionic polypeptide gradually hydrolyzed to expose the initial cationic amine moieties, causing the NMs to 'decompose' into individual CS-PLL and 'spill' the cationic molecules which then disrupted and killed the bacteria. This 'smart' bacteria-recognizing chitosan-decorated nanosystem opens the pathway to explore other anionic and cationic and biocompatible polymers for 'stealth' delivery of antimicrobial polypeptide, and 'on-demand' recovery of the cationic parts to kill bacteria at infection sites.
机译:预计新一代抗微生物剂将表现出非代谢杀伤机制,高杀伤效力和生物相容性。我们合成阳离子壳聚糖衍生物和阴离子壳聚糖衍生物 - 特别是α-聚(L)赖氨酸旁边接枝壳聚糖(CS-PLL)和用于壳聚糖的阴离子柠檬酸酐(CA)改性聚赖氨酸侧移植物(CS-PLL-CA. )。 CS-PLL-CA的β-羧酸酰胺是pH-不稳定的,在pH6或以下下可自切割。当我们混合阳离子(CS-PLL)和阴离子(CS-PLL-CA)肽糖共聚物时,它们由于静电电荷相互作用而自动组装成核心和壳聚糖多糖中的相对带电的肽在壳上的武器。由于壳聚糖保护对壳体上的壳聚糖保护,NMS在7.4的生理pH下表现出高血管和细胞锁相组合(无毒性)。达到细菌感染部位后,壳聚糖壳在细菌周围相互作用和积累。由于细菌代谢和宿主免疫应答的组合作用,身体中的细​​菌感染位点通常显示局部酸度,并且pH可以降低至5.5。在这种低pH下,阴离子多肽的β-羧酸酰胺键逐渐水解以暴露初始阳离子胺部分,使得NMS将“分解”进入单独的CS-PLL和'溢出'然后阳离子分子中断并杀死细菌。这种“智能”细菌识别壳聚糖装饰的纳米系统打开了途径,探索其他阴离子和阳离子和生物相容性的聚合物,用于“隐身”递送抗菌多肽,并“按需”恢复阳离子零件以杀死感染部位的细菌。

著录项

  • 来源
    《Biomaterials Science》 |2021年第5期|共12页
  • 作者单位

    Centre of Antimicrobial Bioengineering School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459;

    Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Kent Ridge Singapore 117585;

    Centre of Antimicrobial Bioengineering School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计量学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号