首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >Crystallization of Ge2Sb2Te5 under high hydrostatic pressures: Differences in nanoscale atomic ordering in as-deposited and pressure-induced amorphous phases
【24h】

Crystallization of Ge2Sb2Te5 under high hydrostatic pressures: Differences in nanoscale atomic ordering in as-deposited and pressure-induced amorphous phases

机译:高静压压力下GE2SB2TE5的结晶:沉积和压力诱导的无定形相中纳米级原子排序的差异

获取原文
获取原文并翻译 | 示例
           

摘要

The crystallization process acts as a bottleneck to the development of phase-change memory devices. Here, we compare the crystallization of as-deposited and pressure-induced amorphous phases of Ge2Sb2Te5 under hydrostatic pressures up to 8.5 GPa. The as-deposited phase fully converts to a stressed metastable cubic phase (at ca. 135 degrees C) at pressures below 3 GPa and remains cubic up to the maximum temperature used (240 degrees C). At higher pressures, the as-deposited phase partially crystallizes directly into the stable hexagonal phase at a significantly lower temperature (110 degrees C), however a significant volume fraction of the amorphous phase remains even for temperatures as high as 240 degrees C. The intensities of the Bragg diffraction peaks dramatically decrease with increasing pressure, further underscoring the suppression of crystal growth. In stark contrast, the pressure-induced amorphous phase- due to memory effects originating from the crystalline phase - crystallizes at ambient conditions at a lower temperature than its as-deposited counterpart. Furthermore, the pressure-induced amorphous phase also fully transforms directly into the hexagonal modification at pressures up to ca. 5 GPa. At higher pressure (8.5 GPa), an orthorhombic phase is formed. Different from the as-deposited phase, the crystallization temperature of pressure-induced amorphous Ge2Sb2Te5 increases with pressure. The results reported here demonstrate that differences in nanoscale ordering in as-deposited (statistically ordered) and pressure-induced (chemically ordered) amorphous phases dramatically influence crystallization and will serve as a guideline for insightful development of phase-change devices. (C) 2021 The Author(s). Published by Elsevier B.V.
机译:结晶过程是相变存储器件发展的瓶颈。在这里,我们比较了在高达8.5 GPa的静水压力下沉积态和压力诱导的Ge2Sb2Te5非晶相的结晶。沉积态相在低于3 GPa的压力下完全转变为应力亚稳立方相(约135摄氏度),并在使用的最高温度(240摄氏度)下保持立方。在更高的压力下,沉积态相在显著更低的温度(110℃)下直接结晶为稳定的六方相,然而,即使在高达240℃的温度下,非晶相的显著体积分数仍然存在。布拉格衍射峰的强度随着压力的增加而显著降低,进一步强调了对晶体生长的抑制。与之形成鲜明对比的是,压力诱导的非晶相——由于晶相产生的记忆效应——在环境条件下比沉积时的对应物在更低的温度下结晶。此外,在高达约5 GPa的压力下,压力诱导的非晶相也完全直接转变为六方改性。在较高压力(8.5 GPa)下,形成正交相。与沉积相不同,压力诱导非晶Ge2Sb2Te5的晶化温度随压力升高而升高。本文的结果表明,沉积态(统计有序)和压力诱导(化学有序)非晶相纳米级有序的差异对晶化有显著影响,将作为相变器件深入发展的指导方针。(c)2021作者。由Elsevier B.V.出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号