...
首页> 外文期刊>Journal of Physics, D. Applied Physics: A Europhysics Journal >Indium segregation mechanism and V-defect formation at the [0001] InAlN surface: an ab-initio investigation
【24h】

Indium segregation mechanism and V-defect formation at the [0001] InAlN surface: an ab-initio investigation

机译:铟偏析机制和V缺陷形成Inaln Surface:AB-Initio调查

获取原文
获取原文并翻译 | 示例
           

摘要

First-principle calculations were performed to investigate adsorption and diffusion of indium and aluminum atoms on (0001) and (0001) In (18%) AlN surfaces. First, it was shown that these surfaces are most stable when they contain complex defects. The presence of vacancies causes the In to be strongly bound to the surface with the adsorption energy increasing by 0.11 eV for metal-polar and by 0.78 eV N-polar. In contrast, the adsorption strength of Al to the surface with defects decreases; the corresponding energy goes from 3.96 eV-2.29 eV (metal-polar) and from 8.30 eV-5.05 eV (N-polar). Simultaneously, the diffusion of In is enhanced; its energy barrier decreases by 0.74 eV (0.06 eV) for the N-polar (metal-polar) InAlN surface, whereas that of the Al adatom increases by 0.32 eV for metal-polar (0.08 eV for N-polar), which should limit its diffusion on the surface. Therefore, the indium atoms will tend to migrate towards the complex defects. Eventually, during epitaxial growth, this aggregation of indium atoms around the defects and the low mobility of Al atoms could be the origin of the observed V defects, the phase separation and the crystallographic degradation of the InAlN epitaxial layers with increasing thickness.
机译:通过第一性原理计算,研究了铟和铝原子在(0001)和(0001)AlN(18%)表面上的吸附和扩散。首先,研究表明,当这些表面含有复杂缺陷时,它们是最稳定的。空位的存在导致In与表面强烈结合,对于金属极性,吸附能增加0.11 eV,而对于N极性,吸附能增加0.78 eV。相比之下,铝在缺陷表面的吸附强度降低;相应的能量为3.96 eV-2.29 eV(金属极性)和8.30 eV-5.05 eV(N极性)。同时,In的扩散增强;对于N极性(金属极性)InAlN表面,其势垒降低0.74 eV(0.06 eV),而对于金属极性(N极性)Al吸附原子,其势垒增加0.32 eV(0.08 eV),这将限制其在表面上的扩散。因此,铟原子倾向于向复杂缺陷迁移。最终,在外延生长过程中,缺陷周围铟原子的聚集和铝原子的低迁移率可能是观察到的V缺陷、相分离和随厚度增加的InAlN外延层的晶体退化的根源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号