...
首页> 外文期刊>Coral reefs: journal of the International Society for Reef Studies >Molecular detection and microbiome differentiation of two cryptic lineages of giant barrel sponges from Conch Reef, Florida Keys
【24h】

Molecular detection and microbiome differentiation of two cryptic lineages of giant barrel sponges from Conch Reef, Florida Keys

机译:佛罗里达群岛海螺礁巨筒海绵两个神秘谱系的分子检测与微生物谱分化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The giant barrel sponge, Xestospongia muta, represents a dominant member of Caribbean reef communities. Recent microsatellite data have revealed the presence of two genetic clusters of X. muta in a monitored population on Conch Reef, Florida Keys, with a reduced abundance of one cluster among the largest individuals. Tracking changes to populations over time and their ecological significance requires rapid identification of each genetic cluster and subsequent studies of biological differences between clusters. Here, we show that single-gene barcoding detected the same intraspecific genetic variation within X. muta from Conch Reef as microsatellite data, with mitochondrial gene sequences (cytochrome c oxidase subunit I, I3-M11 partition) from 54 individuals corresponding to 4 known haplotypes within the two genetic clusters. Remarkably, mapping these haplotypes to barrel sponges worldwide revealed positioning on opposite ends of a global network, despite their sympatric occurrence. Further, we investigated whether differences in symbiotic microbial communities could be detected between the two clusters using next-generation (Illumina) sequencing of 16S rRNA gene amplicons. Both clusters exhibited highly diverse microbial communities, with 12,185 total OTUs spanning 38 bacterial and 3 archaeal phyla, but significant differences in microbial community structure (PERMANOVA; p < 0.001) and diversity (Shannon diversity index; p < 0.01) were detected between the two clusters. As sponges typically exhibit interspecific, but not intraspecific, variability in microbial communities, these findings within a sympatric population provide additional support for ecologically relevant cryptic species of X. muta.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号