首页> 外文期刊>Alcohol >Alcohol hangover effects on brain cortex non-synaptic mitochondria and synaptosomes bioenergetics
【24h】

Alcohol hangover effects on brain cortex non-synaptic mitochondria and synaptosomes bioenergetics

机译:酒精宿醉对脑皮质非突触线粒体和突触骨生物植物生物植物的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Alcohol hangover (AH) has been associated with oxidative stress and mitochondrial dysfunction. We herein postulate that AH-induced mitochondrial alterations can be due to a different pattern of response in synaptosomes and non-synaptic (NS) mitochondria. Mice received intraperitoneal (i.p.) injections of ethanol (3.8 g/kg) or saline and were sacrificed 6 h afterward. Brain cortex NS mitochondria and synaptosomes were isolated by Ficoll gradient. Oxygen consumption rates were measured in NS mitochondria and synaptosomes by high-resolution respirometry. Results showed that NS-synaptic mitochondria from AH animals presented a 26% decrease in malate-glutamate state 3 respiration, a 64% reduction in ATP content, 28-37% decrements in ATP production rates (malate-glutamate or succinate-dependent, respectively), and 44% inhibition in complex IV activity. No changes were observed in mitochondrial transmembrane potential (Delta Psi) or in UCP-2 expression in NS-mitochondria. Synaptosome respiration driving proton leak (in the presence of oligomycin), and spare respiratory capacity (percentage ratio between maximum and basal respiration) were 30% and 15% increased in hangover condition, respectively. Synaptosomal ATP content was 26% decreased, and ATP production rates were 40 -55% decreased (malate-glutamate or succinate-dependent, respectively) in AH mice. In addition, a 24% decrease in Delta Psi and a 21% increase in UCP-2 protein expression were observed in synaptosomes from AH mice. Moreover, mitochondrial respiratory complexes I-III, II-III, and IV activities measured in synaptosomes from AH mice were decreased by 18%, 34%, and 50%, respectively. Results of this study reveal that alterations in bioenergetics status during AH could be mainly due to changes in mitochondrial function at the level of synapses. (C) 2018 Elsevier Inc. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号