...
首页> 外文期刊>Neurochemistry International: The International Journal for the Rapid Publication of Critical Reviews, Preliminary and Original Research Communications in Neurochemistry >Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation
【24h】

Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation

机译:通过调节Tau磷酸化和ROS生成,Glob1的下调抑制了果蝇在果蝇中的人神经元末骨病发病机制

获取原文
获取原文并翻译 | 示例
           

摘要

Human tauopathies represent a group of neurodegenerative disorders, characterized by abnormal hyperphosphorylation and aggregation of tau protein, which ultimately cause neurodegeneration. The aberrant tau hyperphosphorylation is mostly attributed to the kinases/phosphatases imbalance, which is majorly contributed by the generation of reactive oxygen species (ROS). Globin(s) represent a well-conserved group of proteins which are involved in O2 management, regulation of cellular ROS in different cell types. Similarly, Drosophila globin1 (a homologue of human globin) with its known roles in oxygen management and development of nervous system exhibits striking similarities with the mammalian neuroglobin. Several recent evidences support the hypothesis that neuroglobins are associated with Alzheimer's disease pathogenesis. We herein noted that targeted expression of human-tau induces the cellular level of Glob1 protein in Drosophila tauopathy models. Subsequently, RNAi mediated restored level of Glob1 restricts the pathogenic effect of human-tau by minimizing its hyperphosphorylation via GSK-3 beta/p-Akt and p-JNK pathways. In addition, it also activates the Nrf2-keap1-ARE cascade to stabilize the tau-mediated increased level of ROS. These two parallel cellular events provide a significant rescue against human tau-mediated neurotoxicity in the fly models. For the first time we report a direct involvement of an oxygen sensing globin gene in tau etiology. In view of the fact that human genome encodes for the multiple Globin proteins including a nervous system specific neuroglobin; and therefore, our findings may pave the way to investigate if the conserved oxygen sensing globin gene(s) can be exploited in devising novel therapeutic strategies against tauopathies.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号