...
首页> 外文期刊>Plasma physics and controlled fusion >Overview of the isotope effects in the ASDEX Upgrade tokamak
【24h】

Overview of the isotope effects in the ASDEX Upgrade tokamak

机译:Asdex升级到Kamak中的同位素效应概述

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, measurements on the ASDEX Upgrade tokamak and modelling performed for plasmas with hydrogen (H) and deuterium (D) as the main gas have improved our understanding of the ion mass dependencies in fusion plasmas. The observed isotope effects can be explained with established physics processes which highlight the importance of treating heat transport with coupled electron and ion heat channels. In the core of electron heated L-mode plasmas, the mass dependence of the electron-ion equipartition results in a reduction of q(i)/q(e) with increasing ion mass. Combined with higher profile stiffness in the ions compared to the electrons, this results in improved core confinement for higher ion masses. At the edge of L-mode plasmas where a higher collisionality is observed, parallel electron dynamics is fundamental for turbulence. The parallel electron dynamics term in the gyrokinetic equations directly depends on m(i)/m(e), resulting in a different kinetic response with different ion mass. Higher turbulent fluxes are expected with lower ion mass. This is consistent with the difference in L-ne observed in the experiment. The mass dependence of turbulent transport in the L-mode edge has direct consequences for the L-H transition. More heating power is required to enter the H-mode at lower mass (P-L-H(H) similar to 2P(L-H)(D)). This is expected if the critical ExB shearing rate gamma(ExB) is important for the transition from L to H mode. In the H-mode pedestal, gamma(ExB) remains important to regulate the turbulent transport. The electrons do not contribute to gamma(ExB) and the enhanced equipartition for lower ion masses causes a shift from the ion channel to the electron channel in the absolute heat fluxes. Consequently, the inter edge localised mode (ELM) transport is found to be higher with lower isotope mass. This enhanced transport in H can prevent the pedestal from reaching the peeling-ballooning stability boundary with engineering parameters where D plasmas are peeling-ballooning unstable. Increasing the triangularity reduces the inter ELM transport in H stronger than in comparable D plasmas. For matched pedestal top and matched heat sources, the core heat transport is found to be similar for H and D when the fast-ion content is low. When ion temperature gradient turbulence stabilisation by fast ions becomes relevant, the mass dependent fast-ion slowing down results in higher fast-ion content in D and therefore in a reduction of ion heat transport in the core. Then, even for matched pedestals tau(D)(E) > tau(H)(E).
机译:近年来,在ASDEX升级托卡马克上进行的测量和对以氢(H)和氘(D)为主要气体的等离子体进行的建模,提高了我们对聚变等离子体中离子质量依赖性的理解。观测到的同位素效应可以用已建立的物理过程来解释,这些物理过程强调了用耦合电子和离子热通道处理热传输的重要性。在电子加热的L型等离子体核心中,电子-离子均分的质量依赖性导致q(i)/q(e)随着离子质量的增加而减少。与电子相比,离子具有更高的剖面刚度,这就改善了对更高离子质量的核心约束。在观察到较高碰撞性的L型等离子体边缘,平行电子动力学是湍流的基础。回旋动力学方程中的平行电子动力学项直接依赖于m(i)/m(e),从而导致不同离子质量下的不同动力学响应。离子质量越低,湍流通量越高。这与实验中观察到的L-ne差异一致。L模边缘湍流输运的质量依赖性对L-H跃迁有直接影响。在较低质量(P-L-H(H)类似于2P(L-H)(D))下进入H模式需要更多的加热功率。如果临界ExB剪切速率γ(ExB)对从L模式过渡到H模式很重要,则这是预期的。在H型基座中,γ(ExB)对调节湍流输运仍然很重要。电子对伽马(ExB)没有贡献,而较低离子质量的增强均分导致绝对热通量从离子通道转移到电子通道。因此,边间局部化模式(ELM)输运在同位素质量较低时较高。这种在H中增强的输运可以防止基座在工程参数下达到剥离气球稳定边界,其中D等离子体剥离气球不稳定。增加三角形减少了H中ELM间的传输,其强度比D等离子体强。对于匹配的基座顶部和匹配的热源,发现当快离子含量较低时,H和D的堆芯传热相似。当快离子的离子温度梯度湍流稳定变得相关时,依赖于质量的快离子减速会导致D中的快离子含量增加,从而减少核心中的离子热传输。然后,即使对于匹配的基座tau(D)(E)>tau(H)(E)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号