...
首页> 外文期刊>Journal of Neuroscience Methods >Computational approach to understand temporal and spatial tactile transmission processes from mechanical stimuli of the index fingertip to the primary somatosensory cortex
【24h】

Computational approach to understand temporal and spatial tactile transmission processes from mechanical stimuli of the index fingertip to the primary somatosensory cortex

机译:从索引指尖的机械刺激到原发性躯体卷曲皮层的机械刺激理解时间和空间触觉传输过程的计算方法

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanisms of information transmission using tactile sense are one of major concerns in producing simulated experience in virtual or augmented reality as well as in compensating elderly or impaired people with diminished tactile sensory function. However, important mechanism of the difference of peak latency in the primary somatosensory cortex (SI) between electrical and mechanical stimulations of finger skin is not fully understood. We propose a computational approach to fuse a computational model to simulate temporal and spatial transmission processes from mechanical stimuli to the SI and experimental method using a magnetoencephalograph (MEG). In our model, a tactile model that combined a three-dimensional mechanical model of fingertip skin and a neurophysiological model of a slowly adapting type 1 (SA1) mechanoreceptor was integrated with a somatosensory evoked field (SEF) response model. Electrical and mechanical stimulations were applied to the same locations of the right or left index fingertips of three subjects using a MEG. By identifying parameters of the SEF response model using the electrical stimulation test data, predicted first peak latency due to a mechanical stimulus was identical to its average value obtained from the mechanical stimulation test data, while the spatial map predicted at the multiple SA1 receptors qualitatively corresponded to the MEG image map in the timings of peak latency. This suggests that mechanical change in the skin and neurophysiological responses generate the difference of peak latency in SI between electrical and mechanical stimulations. The computational approach has the potential for detailed investigation of mechanisms of tactile information transmission.
机译:利用触觉传递信息的机制是在虚拟现实或增强现实中产生模拟体验,以及补偿老年人或触觉功能受损的人的主要问题之一。然而,手指皮肤电刺激和机械刺激之间初级躯体感觉皮层(SI)峰值潜伏期差异的重要机制尚不完全清楚。我们提出了一种融合计算模型的计算方法,以模拟从机械刺激到SI的时间和空间传输过程,以及使用脑磁图(MEG)的实验方法。在我们的模型中,结合指尖皮肤的三维力学模型和缓慢适应1型(SA1)机械感受器的神经生理学模型的触觉模型与体感诱发场(SEF)反应模型相结合。使用MEG对三名受试者左右食指尖的相同位置进行电刺激和机械刺激。通过使用电刺激试验数据识别SEF反应模型的参数,预测的机械刺激引起的第一个峰值潜伏期与其从机械刺激试验数据获得的平均值相同,而在多个SA1受体上预测的空间图在峰值潜伏期的计时上定性地对应于MEG图像图。这表明,皮肤的机械变化和神经生理学反应产生了电刺激和机械刺激之间SI峰值潜伏期的差异。这种计算方法有可能详细研究触觉信息传递的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号