首页> 外文期刊>Applied optics >Pixel dislocation correction method for a laser confocal scanning microscope through the nonlinear triangular wave driving mode and square wave index reconstruction
【24h】

Pixel dislocation correction method for a laser confocal scanning microscope through the nonlinear triangular wave driving mode and square wave index reconstruction

机译:通过非线性三角波驱动模式和方波指数重建激光共焦扫描显微镜的像素脱位校正方法

获取原文
获取原文并翻译 | 示例
           

摘要

The reciprocate scanning scheme of two-dimensional galvanometers is widely used in laser confocal scanning microscopes with high speed. However, the equal interval acquisition of an analog digital acquisition card (AD) and the unequal change of the galvanometer's scanning speed will cause the dislocation of pixels and distortion of the reconstructed image. Meanwhile, the movement properties of the galvanometers in the edge of the scanning area are complex, which will increase the difficulty of segmenting the collected one-dimensional data stream the AD collected into row data of a two-dimensional reconstructed image. Therefore, how to timely and accurately segment the one-dimensional data stream the AD collected into the row data of two-dimensional reconstructed image is not only the key to solve image distortion of a laser confocal scanning microscope with high speed but also the prerequisite to improve the accuracy of row data dislocation correction. A driving mode based on the nonlinear triangular wave and a dislocation-correcting method using a square wave index are proposed. Namely, on the basis of the galvanometer's scanning analysis, the equation of a nonlinear triangular wave driving voltage is established, and the switching frequency of the Y-galvanometer's driving voltage is obtained by calculating the collected switching frequency of the X-galvanometer; thus, the uniformity of the galvanometer's scanning trajectories is secured. Finally, the row segmentation flag pulse is first introduced into the one-dimensional data stream the AD collected, and the square wave index is used to segment the collected data, which means the one-dimensional data stream can be segmented timely and accurately via hardware method. Meanwhile, the pixel dislocation can be corrected. The experimental result shows that, compared with the Nikon A1R+ confocal microscope, the proposed method can effectively correct the pixel dislocation, and the position coincidence error is less than 0.7%. The proposed method will be helpful to improve the image quality of a laser confocal scanning microscope with high speed. (C) 2021 Optical Society of America
机译:二维振镜的往复扫描方案广泛应用于高速激光共焦扫描显微镜。然而,模拟数字采集卡(AD)的等间隔采集和检流计扫描速度的不等变化将导致像素错位和重建图像失真。同时,振镜在扫描区域边缘的运动特性复杂,这将增加将采集到的一维数据流从AD采集到的二维重建图像的行数据分割的难度。因此,如何将AD采集的一维数据流及时、准确地分割成二维重建图像的行数据,不仅是解决激光共焦扫描显微镜高速图像畸变的关键,也是提高行数据错位校正精度的前提。提出了一种基于非线性三角波的驱动模式和基于方波指数的位错校正方法。即在检流计扫描分析的基础上,建立了非线性三角波驱动电压方程,通过计算X检流计采集的开关频率,得到Y检流计驱动电压的开关频率;因此,电流计扫描轨迹的均匀性得到了保证。最后,在采集到的一维数据流中引入行分割标志脉冲,并利用方波指数对采集到的数据进行分割,这意味着可以通过硬件方法对一维数据流进行及时、准确的分割。同时,可以校正像素错位。实验结果表明,与Nikon A1R+共焦显微镜相比,该方法能有效地校正像素错位,位置重合误差小于0.7%。该方法将有助于提高高速激光共聚焦扫描显微镜的图像质量。(2021)美国光学学会

著录项

  • 来源
    《Applied optics》 |2021年第12期|共9页
  • 作者单位

    Univ Shanghai Sci &

    Technol Opt Elect &

    Comp Engn Shanghai 20093 Peoples R China;

    Univ Shanghai Sci &

    Technol Opt Elect &

    Comp Engn Shanghai 20093 Peoples R China;

    Univ Shanghai Sci &

    Technol Opt Elect &

    Comp Engn Shanghai 20093 Peoples R China;

    Univ Shanghai Sci &

    Technol Opt Elect &

    Comp Engn Shanghai 20093 Peoples R China;

    Univ Shanghai Sci &

    Technol Opt Elect &

    Comp Engn Shanghai 20093 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号