...
首页> 外文期刊>Applied Microbiology and Biotechnology >Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A
【24h】

Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A

机译:生物浸出的进展:细菌金属硫化物氧化的基本原理和机理(A部分)

获取原文
获取原文并翻译 | 示例
           

摘要

Bioleaching of metal sulfides is performed by a diverse group of microorganisms. The dissolution chemistry of metal sulfides follows two pathways, which are determined by the mineralogy and the acid solubility of the metal sulfides: the thiosulfate and the polysulfide pathways. Bacterial cells can effect this metal sulfide dissolution via iron(II) ion and sulfur compound oxidation. Thereby, iron(III) ions and protons, the metal sulfide-attacking agents, are available. Cells can be active either in planktonic state or in forming biofilms on the mineral surface; however, the latter is much more efficient in terms of bioleaching kinetics. In the case of Acidithiobacillus ferrooxidans, bacterial exopolymers contain iron(III) ions, each complexed by two uronic acid residues. The resulting positive charge allows an electrostatic attachment to the negatively charged pyrite. Thus, the first function of complexed iron(III) ions is the mediation of cell attachment, while their second function is oxidative dissolution of the metal sulfide, similar to the role of free iron(III) ions in non-contact leaching. In both cases, the electrons extracted from the metal sulfide reduce molecular oxygen via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membranes. In this review, we summarize some recent discoveries relevant to leaching bacteria which contribute to a better understanding of these fascinating microorganisms. These include surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, and biofilm formation. The study of microbial interactions among multispecies leaching consortia, including cell-to-cell communication mechanisms, must be considered in order to reveal more insights into the biology of bioleaching microorganisms and their potential biotechnological use.
机译:金属硫化物的生物浸提是由多种微生物进行的。金属硫化物的溶解化学遵循两个途径,这是由金属硫化物的矿物学和酸溶解度决定的:硫代硫酸盐途径和多硫化物途径。细菌细胞可通过铁(II)离子和硫化合物的氧化作用来影响这种金属硫化物的溶解。因此,可获得铁(III)离子和质子,即金属硫化物攻击剂。细胞可以处于浮游状态,也可以在矿物质表面形成生物膜。然而,就生物浸出动力学而言,后者更为有效。就酸性氧化亚铁杆菌而言,细菌外聚合物含有铁(III)离子,每个离子都被两个糖醛酸残基复合。产生的正电荷允许静电附着到带负电的黄铁矿上。因此,络合的铁(III)离子的第一功能是细胞附着的介导,而其第二功能是金属硫化物的氧化溶解,类似于游离铁(III)离子在非接触浸出中的作用。在这两种情况下,从金属硫化物提取的电子都通过氧化还原链还原分子氧,形成横跨周质空间并连接外膜和内膜的超复合物。在这篇综述中,我们总结了一些与浸出细菌有关的最新发现,这些发现有助于更好地理解这些迷人的微生物。这些包括表面科学,铁和硫代谢的生物化学,厌氧代谢和生物膜形成。为了揭示更多关于生物浸出微生物的生物学及其潜在生物技术用途的见识,必须考虑对多种浸出集团之间的微生物相互作用进行研究,包括细胞间通讯机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号