...
首页> 外文期刊>SAE International Journal of Vehicle Dynamics, Stability, and NVH >Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors
【24h】

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

机译:为一个自治和扭矩矢量控制无人驾驶电动赛车车辆与多个汽车

获取原文
获取原文并翻译 | 示例
           

摘要

Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture. A quasi-static model is introduced to predict the understeer characteristics at different longitudinal accelerations. The model is coupled with an off-line optimization for the a-priori investigation of the potential benefits of torque-vectoring. The systematic computation of the achievable cornering limits is used to specify and design realistic maps of the reference yaw rate, and a non-linear feedforward yaw moment contribution providing the reference cornering response in quasi-static conditions. A gain scheduled proportional integral controller increases yaw damping, thus enhancing the transient response. Simulation results demonstrate the effectiveness of the proposed approach.
机译:电动汽车与多个汽车许可证持续的直接偏航力矩控制,也称扭矩矢量。提高过弯的反应,例如,通过扩展线性区域的车辆转向不足的特点,通过增加最大的可实现的横向加速度。利益是人类良好的文档记录汽车,然而,有限的信息是可用的自主/无人驾驶车辆。在过去的几年里,转向控制器在转弯自动驾驶限制相当先进,但目前尚不清楚如何去做这些控制器应该与集成一个扭矩矢量系统。论述了集成扭矩矢量控制和自动驾驶,包括扭矩矢量的设计和实现控制器的一个自治的电动汽车一个新颖的赛车比赛。主要的车辆特征和控制体系结构。预测的不足转向特性不同的纵向加速度。加上一个离线优化吗先天的调查的潜在好处扭矩矢量。用于实现转弯的限制指定和设计的现实的地图参考偏航率,和一个非线性前馈偏航时刻贡献提供参考转弯在准静态条件下的反应。获得预定比例积分控制器增加偏航阻尼,从而增强瞬态响应。证明的有效性的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号