首页> 外文期刊>Antioxidants and redox signalling >Redox control of molecular motion in switchable artificial nanoscale devices.
【24h】

Redox control of molecular motion in switchable artificial nanoscale devices.

机译:可切换人工纳米装置中分子运动的氧化还原控制。

获取原文
获取原文并翻译 | 示例
       

摘要

The design, synthesis, and operation of molecular-scale systems that exhibit controllable motions of their component parts is a topic of great interest in nanoscience and a fascinating challenge of nanotechnology. The development of this kind of species constitutes the premise to the construction of molecular machines and motors, which in a not-too-distant future could find applications in fields such as materials science, information technology, energy conversion, diagnostics, and medicine. In the past 25 years the development of supramolecular chemistry has enabled the construction of an interesting variety of artificial molecular machines. These devices operate via electronic and molecular rearrangements and, like the macroscopic counterparts, they need energy to work as well as signals to communicate with the operator. Here we outline the design principles at the basis of redox switching of molecular motion in artificial nanodevices. Redox processes, chemically, electrically, or photochemically induced, can indeed supply the energy to bring about molecular motions. Moreover, in the case of electrically and photochemically induced processes, electrochemical and photochemical techniques can be used to read the state of the system, and thus to control and monitor the operation of the device. Some selected examples are also reported to describe the most representative achievements in this research area.
机译:表现出其组成部分的可控运动的分子级系统的设计,合成和操作是纳米科学领域的一个重大课题,也是纳米技术令人着迷的挑战。这种物种的发展为分子机器和电机的构建提供了前提,在不久的将来,分子机器和电机可以在诸如材料科学,信息技术,能量转换,诊断和医学等领域找到应用。在过去的25年中,超分子化学的发展使人们能够构建有趣的各种人工分子机器。这些设备通过电子和分子重排进行操作,并且像宏观对应物一样,它们需要能量才能工作,并且需要信号来与操作员进行通信。在这里,我们概述了基于人工纳米设备中分子运动的氧化还原转换的设计原理。化学,电或光化学诱导的氧化还原过程确实可以提供能量以引起分子运动。此外,在电和光化学诱导的过程中,可以使用电化学和光化学技术读取系统状态,从而控制和监视设备的运行。还报告了一些选定的例子,以描述该研究领域中最具代表性的成就。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号