首页> 外文期刊>Applied optics >ESTIMATING PRIMARY PRODUCTION AT DEPTH FROM REMOTE SENSING
【24h】

ESTIMATING PRIMARY PRODUCTION AT DEPTH FROM REMOTE SENSING

机译:通过遥感深度估算初级生产

获取原文
获取原文并翻译 | 示例
           

摘要

By use of a common primary-production model and identical photosynthetic parameters, four different methods were used to calculate quanta (Q) and primary production (P) at depth for a study of high-latitude North Atlantic waters. The differences among the four methods relate to the use of pigment information in the upper water column. Methods 1 and 2 use pigment biomass (B) as an input and a subtropical, empirical relation between K-d (diffuse attenuation coefficient) and B to estimate Q at depth. Method 1 uses measured B, but Method 2 uses B derived from the Coastal Zone Color Scanner (subtropical algorithm) as inputs. Methods 3 and 4 use the phytoplankton absorption coefficient (alpha(pb)) instead of B as input, and Method 3 uses empirically derived alpha(ph)(440) and K-d values, and Method 4 uses analytically derived alpha(ph)(440) and a (total absorption coefficient) values based on the same remote measurements as Method 2. When the calculated and the measured values of Q(z) and P(z) were compared, Method 4 provided the closest results [for P(z), r(2) = 0.95 (n = 24), and for Q(z), r(2) = 0.92 (n = 11)]. Method 1 yielded the worst results [for P(z), r(2) = 0.56 and for Q(z), r(2) = 0.81]. These results indicate that one of the greatest uncertainties in the remote estimation of P can come from a potential mismatch of the pigment-specific absorption coefficient (alpha(ph)*), which is needed implicitly in current models or algorithms based on B. We point out that this potential mismatch can be avoided if we arrange the models or algorithms so that they are based on the pigment absorption coefficient (alpha(ph)). Thus, except for the accuracy of the photosynthetic parameters and the above-surface light intensity, the accuracy of the remote estimation of P depends on how accurately alpha(ph) can be estimated, but not how accurately B can be estimated. Also, methods to derive alpha(ph) empirically and analytically from remotely sensed data are introduced. Curiously, combined application of subtropical algorithms for both B and K-d to subarctic waters apparently compensates to some extent for effects that are due to their similar and implicit pigment-specific absorption coefficients for the calculation of Q(z). [References: 49]
机译:通过使用通用的初级生产模型和相同的光合作用参数,可以使用四种不同的方法来计算高纬度北大西洋水域深处的量子(Q)和初级生产(P)。四种方法之间的差异与上层水柱中颜料信息的使用有关。方法1和2使用色素生物量(B)作为输入,并使用K-d(扩散衰减系数)和B之间的亚热带经验关系来估算深度Q。方法1使用测得的B,但方法2使用从“海岸带颜色扫描仪”(亚热带算法)得出的B作为输入。方法3和方法4使用浮游植物吸收系数(alpha(pb))代替B作为输入,方法3使用经验得出的alpha(ph)(440)和Kd值,方法4使用分析得出的alpha(ph)(440) )和(总吸收系数)值基于与方法2相同的远程测量。当比较Q(z)和P(z)的计算值和测量值时,方法4提供了最接近的结果[对于P(z ),r(2)= 0.95(n = 24),对于Q(z),r(2)= 0.92(n = 11)]。方法1得出最差的结果[对于P(z),r(2)= 0.56,对于Q(z),r(2)= 0.81]。这些结果表明,P的远程估计中最大的不确定性之一可能来自颜料比吸收系数(alpha(ph)*)的潜在失配,这在当前基于B的模型或算法中隐含地需要。指出如果我们将模型或算法安排为基于色素吸收系数(alpha(ph)),则可以避免这种潜在的不匹配。因此,除了光合作用参数和地表光强度的精度外,P的远程估计的精度取决于可估计的alpha(ph)的精确度,而不取决于B的精确度。此外,介绍了从遥感数据中根据经验和分析得出alpha(ph)的方法。奇怪的是,将亚热带算法同时应用于B和K-d到北极水域,显然可以在一定程度上补偿由于计算Q(z)所用的相似和隐含的颜料比吸收系数而产生的影响。 [参考:49]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号