首页> 外文期刊>Artificial Organs >Design method of a foldable ventricular assist device for minimally invasive implantation
【24h】

Design method of a foldable ventricular assist device for minimally invasive implantation

机译:用于微创植入的可折叠心室辅助装置的设计方法

获取原文
获取原文并翻译 | 示例
           

摘要

To date, ventricular assist devices (VADs) have become accepted as a therapeutic solution for end-stage heart failure patients when a donor heart is not available. Newer generation VADs allow for a significant reduction in size and an improvement in reliability. However, the invasive implantation still limits this technology to critically ill patients. Recently, expandable/deployable devices have been investigated as a potential solution for minimally invasive insertion. Such a device can be inserted percutaneously via peripheral vessels in a collapsed form and operated in an expanded form at the desired location. A common structure of such foldable pumps comprises a memory alloy skeleton covered by flexible polyurethane material. The material properties allow elastic deformation to achieve the folded position and withstand the hydrodynamic forces during operation; however, determining the optimal geometry for such a structure is a complex challenge. The numerical finite element method (FEM) is widely used and provides accurate structural analysis, but computation time is considerably high during the initial design stage where various geometries need to be examined. This article details a simplified two-dimensional analytical method to estimate the mechanical stress and deformation of memory alloy skeletons. The method was applied in design examples including two popular types of blade skeletons of a foldable VAD. Furthermore, three force distributions were simulated to evaluate the strength of the structures under different loading conditions experienced during pump operation. The results were verified with FEM simulations. The proposed two-dimensional method gives a close stress and deformation estimation compared with three-dimensional FEM simulations. The results confirm the feasibility of such a simplified analytical approach to reveal priorities for structural optimization before time-consuming FEM simulations, providing an effective tool in the initial structural design stage of foldable minimally invasive VADs.
机译:迄今为止,当没有供体心脏时,心室辅助设备(VAD)已被接受为晚期心力衰竭患者的治疗方案。新一代VAD可以大大减小尺寸并提高可靠性。但是,侵入式植入仍将这项技术限制为重症患者。近来,已经研究了可扩展/可部署设备作为微创插入的潜在解决方案。这样的装置可以以收缩的形式经由外周血管经皮插入,并且在期望的位置以扩展的形式进行操作。这种可折叠泵的常见结构包括被柔性聚氨酯材料覆盖的记忆合金骨架。材料性能允许弹性变形以达到折叠位置并在操作过程中承受流体动力。然而,确定这种结构的最佳几何形状是一项复杂的挑战。数值有限元方法(FEM)被广泛使用并提供准确的结构分析,但是在需要检查各种几何形状的初始设计阶段,计算时间相当长。本文详细介绍了一种简化的二维分析方法,用于估算记忆合金骨架的机械应力和变形。将该方法应用于包括两个常见类型的可折叠VAD叶片骨架的设计示例中。此外,模拟了三种力分布,以评估在泵运行过程中遇到的不同载荷条件下结构的强度。结果通过有限元模拟进行了验证。与三维有限元模拟相比,所提出的二维方法给出了近似的应力和变形估计。结果证实了这种简化的分析方法在费时的有限元模拟之前揭示结构优化优先级的可行性,为可折叠微创VAD的初始结构设计阶段提供了有效的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号