...
首页> 外文期刊>IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society >Large-Dimensional Multibody Dynamics Simulation Using Contact Nodalization and Diagonalization
【24h】

Large-Dimensional Multibody Dynamics Simulation Using Contact Nodalization and Diagonalization

机译:Large-Dimensional Multibody Dynamics Simulation Using Contact Nodalization and Diagonalization

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this article, we propose a novel multibody dynamics simulation framework that can efficiently deal with large-dimensionality and complementarity multicontact conditions. Typical contact simulation approaches require performing contact impulse fixed-point iteration, which has high time-complexity from large-size matrix factorization and multiplication, as well as susceptibility to ill-conditioned contact situations. To circumvent this, we propose a novel framework based on velocity fixed-point iteration (V-FPI), which, by utilizing a certain surrogate dynamics and contact nodalization (with virtual nodes), we achieve not only intercontact decoupling but also their interaxes decoupling (i.e., contact diagonalization) at each iteration step. This then enables us to one-shot/parallel-solve the contact problem during each V-FPI iteration-loop, while avoiding large-size/dense matrix inversion/multiplication, thereby, significantly speeding up the simulation time with improved convergence property. We theoretically show that the solution of our framework is consistent with that of the original problem and, further, elucidate mathematical conditions for the convergence of our proposed solver. Performance and properties of our proposed simulation framework are also demonstrated and experimentally validated for various large-dimensional/multicontact scenarios including deformable objects.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号