首页> 外文期刊>Australian Geomechanics >GEOTECHNICAL STABILITY ANALYSIS: NEW METHODS FOR AN OLD PROBLEM
【24h】

GEOTECHNICAL STABILITY ANALYSIS: NEW METHODS FOR AN OLD PROBLEM

机译:岩土稳定性分析:旧问题的新方法

获取原文
获取原文并翻译 | 示例
           

摘要

Geotechnical stability analysis is traditionally performed by a variety of approximate methods that are based on the theory of limit equilibrium. Although they are simple and appeal to engineering intuition, these techniques suffer from a number of serious disadvantages, not the least of which is the need to presuppose an appropriate failure mechanism in advance. This feature can lead to inaccurate predictions of the true failure load, especially for realistic problems involving layered materials, complex loading, or three-dimensional deformation. A much more rigorous method for assessing the stability of geostructures became available with the advent of the limit (or bound) theorems of classical plasticity in the 1950s. These theorems can be used to give upper and lower bounds on the predicted collapse load (a most valuable property in practice), do not require assumptions to be made about the mode of failure and use only simple strength parameters that are familiar to geotechnical engineers. Although many ingenious bound results have been derived using analytical or numerical methods, practical application of the limit theorems has been restricted by the need to develop specific solution strategies for each problem. Over the last decade, the Newcastle Geotechnical Research Group has developed powerful new methods for performing stability analysis that combine the limit theorems with finite elements and optimisation. These methods are very general and can deal with layered soil profiles, anisotropic strength characteristics, complicated boundary conditions and complex loading in both two and three dimensions. Indeed, they have already been used to obtain new stability solutions for a wide range of practical problems including soil anchors, slopes, foundations under combined loading, excavations, tunnels, mine workings and sinkholes. This paper gives an outline of the new techniques and considers a number of practical applications. Future research developments will also be highlighted.
机译:传统上,岩土工程稳定性分析是通过各种基于极限平衡理论的近似方法进行的。尽管这些技术简单易行,并且具有工程学上的直觉,但它们具有许多严重的缺点,其中最重要的一点是需要预先预设适当的故障机制。此功能可能导致对真实破坏载荷的预测不准确,尤其是对于涉及分层材料,复杂载荷或三维变形的现实问题。随着1950年代经典可塑性极限(或界)定理的出现,一种更严格的评估地质结构稳定性的方法变得可用。这些定理可用于给出预测的倒塌载荷的上限和下限(在实践中是最有价值的属性),不需要对破坏模式进行假设,而仅使用岩土工程师熟悉的简单强度参数即可。尽管已经使用分析或数值方法获得了许多巧妙的约束结果,但是极限定理的实际应用由于需要为每个问题开发特定的求解策略而受到限制。在过去的十年中,纽卡斯尔岩土工程研究小组开发了功能强大的新方法,用于进行稳定性分析,将极限定理与有限元和优化方法相结合。这些方法非常通用,可以处理二维和三维的分层土壤剖面,各向异性强度特征,复杂的边界条件和复杂的荷载。确实,它们已被用于针对各种实际问题获得新的稳定性解决方案,包括土壤锚,边坡,联合荷载下的地基,开挖,隧道,矿山作业和下沉坑。本文概述了新技术,并考虑了许多实际应用。未来的研究发展也将被重点介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号