...
首页> 外文期刊>Numerische Mathematik >The local discontinuous Galerkin method for a singularly perturbed convection–diffusion problem with characteristic and exponential layers
【24h】

The local discontinuous Galerkin method for a singularly perturbed convection–diffusion problem with characteristic and exponential layers

机译:具有特征层和指数层的奇异扰动对流-扩散问题的局部不连续伽辽金方法

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract A singularly perturbed convection–diffusion problem, posed on the unit square in R2documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}^2$$end{document}, is studied; its solution has both exponential and characteristic boundary layers. The problem is solved numerically using the local discontinuous Galerkin (LDG) method on Shishkin meshes. Using tensor-product piecewise polynomials of degree at most k>0documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$k>0$$end{document} in each variable, the error between the LDG solution and the true solution is proved to converge, uniformly in the singular perturbation parameter, at a rate of ON-1lnNk+1/2documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Oleft( left( N^{-1}ln Nright) ^{k+1/2}right) $$end{document} in an associated energy norm, where N is the number of mesh intervals in each coordinate direction. (This is the first uniform convergence result proved for the LDG method applied to a problem with characteristic boundary layers.) Furthermore, we prove that this order of convergence increases to ON-1lnNk+1documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Oleft( left( N^{-1}ln Nright) ^{k+1}right) $$end{document} when one measures the energy-norm difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This uniform supercloseness property implies an optimal L2documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^2$$end{document} error estimate of order N-1lnNk+1documentclass12pt{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$left( N^{-1}ln Nright) ^{k+1}$$end{document} for our LDG method. Numerical experiments show the sharpness of our theoretical results.
机译:摘要 研究了R2documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {R}}^2$$end{document}中提出的一个奇异扰动对流-扩散问题;其解具有指数边界层和特征边界层。在Shishkin网格上使用局部不连续Galerkin(LDG)方法对该问题进行了数值求解。使用最多 k>0documentclass[12pt]{minimal} 的张量积分段多项式,在每个变量中,使用 Package{amsmath} 使用包{wasysym} 使用包{amsfonts} 使用包{amssymb} 使用Package{amsbsy} 使用Package{Mathrsfs} UsePackage{Upgreek} setLength{oddsidemargin}{-69pt} begin{document}$$k>0$$end{document},证明LDG解与真解之间的误差均匀收敛于奇异扰动参数, 以 ON-1lnNk+1/2documentclass[12pt]{minimal} 的速率 usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Oleft( left( N^{-1}ln Nright) ^{k+1/2}right) $$end{document},其中 N 是每个坐标方向上的网格间隔数。(这是LDG方法应用于特征边界层问题的第一个均匀收敛结果。此外,我们证明了这种收敛顺序增加到 ON-1lnNk+1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$Oleft( left( N^{-1}ln Nright) ^{k+1}right) $$end{document} 当测量 LDG 解与真实解的局部高斯-拉道投影到有限元素空间。这种均匀的超紧密性属性意味着 N-1lnNk+1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$L^2$$end{document} 误差估计 N-1lnNk+1documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$$left( N^{-1}ln Nright) ^{k+1}$$end{document} 用于我们的 LDG 方法。数值实验验证了理论结果的清晰性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号