...
首页> 外文期刊>IEEE Transactions on Robotics: A publication of the IEEE Robotics and Automation Society >Closing the Planning–Learning Loop With Application to Autonomous Driving
【24h】

Closing the Planning–Learning Loop With Application to Autonomous Driving

机译:Closing the Planning–Learning Loop With Application to Autonomous Driving

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Real-time planning under uncertainty is critical for robots operating in complex dynamic environments. Consider, for example, an autonomous robot vehicle driving in dense, unregulated urban traffic of cars, motorcycles, buses, etc. The robot vehicle has to plan in both short and long terms, in order to interact with many traffic participants of uncertain intentions and drive effectively. Planning explicitly over a long time horizon, however, incurs prohibitive computational cost and is impractical under real-time constraints. To achieve real-time performance for large-scale planning, this work introduces a new algorithm Learning from Tree Search for Driving (LeTS-Drive), which integrates planning and learning in a closed loop, and applies it to autonomous driving in crowded urban traffic in simulation. Specifically, LeTS-Drive learns a policy and its value function from data provided by an online planner, which searches a sparsely sampled belief tree; the online planner in turn uses the learned policy and value functions as heuristics to scale up its run-time performance for real-time robot control. These two steps are repeated to form a closed loop so that the planner and the learner inform each other and improve in synchrony. The algorithm learns on its own in a self-supervised manner, without human effort on explicit data labeling. Experimental results demonstrate that LeTS-Drive outperforms either planning or learning alone, as well as open-loop integration of planning and learning.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号