...
首页> 外文期刊>Atmospheric chemistry and physics >Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallaj?kull eruption case study
【24h】

Inverting for volcanic SO2 flux at high temporal resolution using spaceborne plume imagery and chemistry-transport modelling: the 2010 Eyjafjallaj?kull eruption case study

机译:利用星空羽流图像和化学迁移模型在高时间分辨率下反演火山中的SO2通量:2010年Eyjafjallaj?kull喷发案例研究

获取原文
获取原文并翻译 | 示例
           

摘要

Depending on the magnitude of their eruptions, volcanoes impact the atmosphere at various temporal and spatial scales. The volcanic source remains a major unknown to rigorously assess these impacts. At the scale of an eruption, the limited knowledge of source parameters, including time variations of erupted mass flux and emission profile, currently represents the greatest issue that limits the reliability of volcanic cloud forecasts. Today, a growing number of satellite and remote sensing observations of distant plumes are becoming available, bringing indirect information on these source terms. Here, we develop an inverse modelling approach combining satellite observations of the volcanic plume with an Eulerian regional chemistry-transport model (CHIMERE) to characterise the volcanic SO2 emissions during an eruptive crisis. The May 2010 eruption of Eyjafjallaj?kull is a perfect case study to apply this method as the volcano emitted substantial amounts of SO2 during more than a month. We take advantage of the SO2 column amounts provided by a vast set of IASI (Infrared Atmospheric Sounding Interferometer) satellite images to reconstruct retrospectively the time series of the mid-tropospheric SO2 flux emitted by the volcano with a temporal resolution of ~2 h, spanning the period from 1 to 12 May 2010. We show that no a priori knowledge on the SO2 flux is required for this reconstruction. The initialisation of chemistry-transport modelling with this reconstructed source allows for reliable simulation of the evolution of the long-lived tropospheric SO2 cloud over thousands of kilometres. Heterogeneities within the plume, which mainly result from the temporal variability of the emissions, are correctly tracked over a timescale of a week. The robustness of our approach is also demonstrated by the broad similarities between the SO2 flux history determined by this study and the ash discharge behaviour estimated by other means during the phases of high explosive activity at Eyjafjallaj? kull in May 2010. Finally, we show how a sequential IASI data assimilation allows for a substantial improvement in the forecasts of the location and concentration of the plume compared to an approach assuming constant flux at the source. As the SO2 flux is an important indicator of the volcanic activity, this approach is also of interest to monitor poorly instrumented volcanoes from space.
机译:根据火山喷发的大小,火山会在各种时间和空间尺度上影响大气。要严格评估这些影响,火山源仍然是一个主要未知数。在喷发的规模上,对源参数的了解有限,包括喷发的质量通量和排放剖面的时间变化,目前是限制火山云预报可靠性的最大问题。如今,越来越多的遥远羽流的卫星和遥感观测变得可用,从而带来了有关这些源术语的间接信息。在这里,我们开发了一种逆向建模方法,该方法结合了对火山羽流的卫星观测结果与欧拉区域化学运输模型(CHIMERE)来表征爆发性危机期间火山岩中的SO2排放。 2010年5月的Eyjafjallaj?kull喷发是使用此方法的完美案例研究,因为火山在一个多月的时间里散发出大量的SO2。我们利用大量IASI(红外大气探测干涉仪)卫星图像提供的SO2柱量,以时间分辨率为〜2 h回顾性地重建了火山散发的对流层SO2通量的时间序列,跨越从2010年5月1日至12日这一时期。我们表明,此重建不需要任何关于SO2通量的先验知识。利用这种重构源对化学运输模型进行初始化,可以可靠地模拟长寿命对流层SO2云在数千公里内的演化。羽流内的异质性主要是由排放物的时间变化引起的,可以在一周的时间范围内正确跟踪。通过这项研究确定的SO2通量历史与在Eyjafjallaj高爆炸活性阶段通过其他方法估算的排灰行为之间的广泛相似性也证明了我们方法的鲁棒性。于2010年5月发布。最后,我们展示了与假设源头恒定通量的方法相比,连续的IASI数据同化方法如何显着改善羽流的位置和浓度的预测。由于SO2通量是火山活动的重要指标,因此这种方法还可以用来监视来自太空的仪器差的火山。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号